Exam

Name

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the questi	ion
---	-----

5) $\mathbf{r}(t) = \frac{3}{2}t\mathbf{i} + (2 - t)\mathbf{k}; 0$	$\leq t \leq 2$			5)
A) Figure 5	B) Figure 1	C) Figure 8	D) Figure 3	
6) $\mathbf{r}(t) = 2\cos t\mathbf{i} + \sin t\mathbf{k}$; $0 \le t \le \pi$			6)
A) Figure 6	B) Figure 2	C) Figure 7	D) Figure 4	
7) $r(t) = tj; -2 \le t \le 2$				7)
A) Figure 1	B) Figure 6	C) Figure 5	D) Figure 3	
8) $r(t) = \sin tj - \cos tk;$	$0 \le t \le \frac{\pi}{2}$			8)
A) Figure 1	B) Figure 7	C) Figure 4	D) Figure 2	
ORT ANSWER. Write the	word or phrase that best	completes each statemen	t or answers the question	n.

SHC

Solve the problem. 9) The curve $x = y^2$ is revolved about the x-axis. Find a parametrization of the surface of revolution and then find the equation of the tangent plane at the point (x,y,z) = (9, 0, 3). 10) a). For the field F(x,y) = Mi + Nj and the closed counterclockwise plane curve C in the 10) xy-plane, show that $\int_C \mathbf{F} \cdot \mathbf{n} \, d\mathbf{s} = \int_C \mathbf{M} \, d\mathbf{y} - \mathbf{N} \, d\mathbf{x}$. b). How would the equality change if the closed path is followed clockwise? 11) Find a parametrization for the ellipsoid $\frac{x^2}{16} + \frac{y^2}{121} + \frac{z^2}{81} = 1$. (Recall that the 11) parametrization of an ellipse $\frac{x^2}{16} + \frac{y^2}{121} = 1$ is $x = 4 \cos \theta$, $y = 11 \sin \theta$, $0 \le \theta < 2\pi$). 12) Suppose that the parametrized plane curve C: (f(u), g(u)) is revolved about the x-axis, 12) where g(u) > 0 and $a \le u \le b$. Show that the surface area of the surface of revolution is 2π $\int_{0}^{U} g(u) \sqrt{[g'(u)]^{2} + [f'(u)]^{2}} du$

13)

14)

15)

Find the equation for the plane tangent to the parametrized surface S at the point P. 13) S is the parabolic cylinder $\mathbf{r}(x, z) = x\mathbf{i} + 2x^2\mathbf{j} + z\mathbf{k}$; P is the point corresponding to

(x, z) = (1, -6)

Solve the problem.

14) Assuming C is a simple closed path , what is special about the integral

 $\int_C \left(9x + 3\sin 3x\cos 3y)\right) dx + \left(3x + 3\cos 3x\sin 3y\right) dy ? Give reasons for your answer.$

Parametrize the surface S.

15) S is the portion of the cylinder $x^2 + y^2 = 36$ that lies between z = 4 and z = 6

Sketch the vector field in the plane along with its horizontal and vertical components at a represent points on the circle x ² + y ² = 4. 16) $\mathbf{F} = -\frac{y}{\sqrt{x^2 + y^2}}\mathbf{i} - \frac{x}{\sqrt{x^2 + y^2}}\mathbf{j}$	16)	26) The velocity field F of a fluid has a constant magnitude k and always points towards the origin. Following the smooth curve $y = f(x)$ from (a, $f(a)$) to (b, $f(b)$), show that the flow along the curve is $\int \mathbf{F} \cdot \mathbf{T} ds = k [(a^2 + (f(a))^2)^{1/2} - (b^2 + (f(b))^2)^{1/2}]$	26)
 Solve the problem. 17) Consider a fluid with a flow field F = x²y³i + 2z²j + zk. A miniature paddlewheel (idealized) is to be inserted into the flow at the point (1,1,1). Find a vector describing the orientation of the paddlewheel axis which produces the maximum rotational speed. 	17)	27) What can be said about the flux of $\mathbf{F} = \frac{\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j} + z\mathbf{k}}{(\sqrt{\mathbf{x}^2 + \mathbf{y}^2 + z^2})^3}$ across a sphere centered at the origin? Will differing radii change the flux?	27)
18) Let $M = \frac{y}{x^2 + y^2}$ and $N = \frac{-x}{x^2 + y^2}$. Show that	18)	Parametrize the surface S.	
$\int_{C} M dx + N dy \neq \int_{R} \int_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy \text{, where } R \text{ is the region bounded by the unit}$		28) S is the portion of the cone $\frac{x^2}{64} + \frac{y^2}{64} = \frac{z^2}{36}$ that lies between $z = 3$ and $z = 4$	28)
circle C centered at the origin. Why is Green's Theorem failing in this case?		29) S is the portion of the sphere $x^2 + y^2 + z^2 = 100$ between $z = -5\sqrt{2}$ and $z = 5\sqrt{2}$	29)
19) Imagine a force field in which the force is always parallel to dr. What is special about the work done in moving a particle in such a field?	19)	Find the equation for the plane tangent to the parametrized surface S at the point P. 30) S is the paraboloid $\mathbf{r}(\theta, r) = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} + 4r^2 \mathbf{k}$; P is the point corresponding to	30)
Find the equation for the plane tangent to the parametrized surface S at the point P. 20) S is the cylinder $\mathbf{r}(\theta, \mathbf{z}) = 12 \cos^2 \theta \mathbf{i} + 6 \sin 2\theta \mathbf{j} + \mathbf{z} \mathbf{k}$; P is the point corresponding to $(\theta, \mathbf{z}) = \left(\frac{\pi}{4}, 4\right)$	20)	$(\theta, \mathbf{r}) = \left[\frac{\pi}{4}, 2\right]$ Solve the problem. 31) For a surface parametrized in the parameters u and v and a force F , show that $\int \mathbf{F} \cdot \mathbf{n} d\sigma =$	31)
Solve the problem. 21) Imagine a force field in which the force is always perpendicular to dr. What is special about the work done in moving a particle in such a field?	21)	$\int F_{\bullet}(\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{v}}) \mathrm{dudv}.$ Sketch the vector field in the plane along with its horizontal and vertical components at a representa-	tive assortment of
22) Find the values of b and c that make $\mathbf{F} = \frac{18x^2y^8}{z^4}\mathbf{i} + \frac{bx^3y^7}{z^4}\mathbf{j} + \frac{cx^3y^8}{z^5}\mathbf{k}$ a gradient field.	22)	points on the circle $x^2 + y^2 = 4$. 32) $F = xi - yj$	32)
Sketch the vector field in the plane along with its horizontal and vertical components at a represent points on the circle $x^2 + y^2 = 4$.	tative assortment of	Parametrize the surface S. 33) S is the portion of the paraboloid $z = 2x^2 + 2y^2$ that lies between $z = 5$ and $z = 7$	33)
23) $\mathbf{F} = \frac{y}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}} \mathbf{j}$	23)	Find the equation for the plane tangent to the parametrized surface S at the point P. 34) S is the cone $\mathbf{r}(\mathbf{r}, \theta) = \mathbf{r} \cos \theta \mathbf{i} + \mathbf{r} \sin \theta \mathbf{j} + 3r \mathbf{k}; P = \left[-\frac{9}{2}\sqrt{2}, \frac{9}{2}\sqrt{2}, 27\right]$	34)
Solve the problem. 24) Show that the value of the integral does not depend on the path taken from A to B. $\int_{A}^{B} z^{6} dx + 3y dy + 6xz dz$	24)	35) S is the sphere $\mathbf{r}(\theta, \phi) = 7 \cos \theta \sin \phi \mathbf{i} + 7 \sin \theta \sin \phi \mathbf{j} + 7 \cos \phi \mathbf{k}$; P is the point corresponding to $(\theta, \phi) = \left(\frac{\pi}{3}, \frac{\pi}{4}\right)$	35)
25) Assume the curl of a vector field \mathbf{F} is zero. Can one automatically conclude that the	25)		
circulation $\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$ for all closed paths C? Explain or justify your answer.			
3		4	

Solve the problem.		46) The velocity field F of a fluid is the spin field $\mathbf{F} = -\frac{ky}{1-kx}\mathbf{i} + \frac{kx}{1-kx}\mathbf{i}$. Following the	46)
36) Assuming all the necessary derivatives exist, show that if $\int \frac{\partial f}{\partial x} dx - \frac{\partial f}{\partial x} dy = 0$ closed	36)	$\sqrt{x^2 + y^2} \sqrt{x^2 + y^2}$	·
C ^{dy} _{dx}		smooth curve $y = f(x)$ from (a, $f(a)$) to (b, $f(b)$), show that the flux across the curve is	
curves C to which Green's Theorem applies, then f satisfies the Laplace equation $\frac{\partial^2 f}{\partial x^2}$ +		$\int \mathbf{F} \cdot \mathbf{n} ds = k[(a^2 + (f(a))^2)^{1/2} - (b^2 + (f(b))^2)^{1/2}]$	
-24		C	
$\frac{\partial^2 f}{\partial v^2} = 0$ for all regions bounded by closed curves C to which Green's Theorem applies.		47) In thermodynamics, the differential form of the internal energy of a system is $dU = T dS$ -	47)
		P dV, where U is the internal energy, T is the temperature, S is the entropy, P is the	
Sketch the vector field in the plane along with its horizontal and vertical components at a represen-	ntative assortment of	pressure, and V is the volume of the system. The First Law of Thermodynamics asserts that dT	
points on the circle $x^2 + y^2 = 4$.	27)	$\frac{\partial V}{\partial V} =$	
57) $\mathbf{F} = \frac{1}{\sqrt{x^2 + y^2}} 1 - \frac{1}{\sqrt{x^2 + y^2}} 1$	37)	$-\frac{\partial P}{\partial S}$.	
		0.5	
Solve the problem. 28) For the curface $z = f(x, y)$ show that the curface integral $\int \int g(x, y, z) dz =$	28)	Find the equation for the plane tangent to the parametrized surface S at the point P.	
So for the surface $z = i(x,y)$, show that the surface integral $\int \int g(x,y,z) dt dt =$		48) S is the cylinder $\mathbf{r}(\theta, z) = 2 \cos \theta \mathbf{i} + 2 \sin \theta \mathbf{j} + z \mathbf{k}$; P is the point corresponding to	48)
$\int \int g(x, y, f(x,y)) \sqrt{[f_X(x,y)]^2 + [f_y(x,y)]^2 + 1} dx dy.$		$(\theta, z) = \left[\frac{\alpha}{2}, 6\right]$	
Parametrize the surface S		Solve the problem	
39) S is the lower portion of the sphere $x^2 + y^2 + z^2 = 1$ cut by the cone $z = \sqrt{x^2 + y^2}$	39)	49) For some inexact differential forms df, a function $g(x, y, z)$ can be found such that dh = $g(x, y, z)$	49)
		y, z) df is exact. When it exists, the function $g(x,y,z)$ is called an "integrating factor". Show	
40) S is the portion of the plane $8x + 8y - 8z = 5$ that lies within the cylinder $x^2 + y^2 = 1$	40)	that $g(x, y, z) = \frac{yz}{x}$ is an integrating factor for the inexact differential $df = -\frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{y} dy$	
Solve the problem.		$\frac{1}{2}$ dz	
41) Assuming C is a simple closed path , what is special about the integral	41)	z ^{uz.}	
$\int (8x + 5e^{8x} \cos 8y) dx + (7x + 5e^{8x} \sin 8y) dy ?$ Give reasons for your answer.		Sketch the vector field in the plane along with its horizontal and vertical components at a represent	ative assortment
C		points on the circle $x^2 + y^2 = 4$.	
(2) Characteristic $4(y^8 + z)$ is $8y^7$ is $\left(7y^8 + 6\right)$ is used	12)	50) $\mathbf{F} = -\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}$	50)
42) Show that df = $-\frac{1}{x^5 z^7} dx + \frac{1}{x^4 z^7} dy - \left(\frac{1}{x^4 z^8} + \frac{1}{x^4 z^7}\right) dz$ is exact.	42)	Solve the problem.	
Parametrize the surface S		51) Assuming C is a closed path, what is special about the integral $\int 7x^6 v^5 dx + 5x^7 v^4 dv$?	51)
43) S is the can cut from the paraboloid $z = \frac{5}{2} = 4x^2 = 4x^2$ by the cone $z = \sqrt{x^2 + x^2}$	43)		
10° 0 is the cap call form the parabolog $2^{\circ} = \frac{1}{16}$ 1° 1° by the cone $2^{\circ} = \sqrt{3}$ $\sqrt{3}$		Give reasons for your answer.	
Sketch the vector field in the plane along with its horizontal and vertical components at a represer	ntative assortment of	52) Find the values of a, b and c that make	52)
points on the circle $x^2 + y^2 = 4$.		$\mathbf{F} = 8y^{6}z^{4}(ax^{3} + bx^{9})\mathbf{i} + 48y^{5}z^{4}(-9x^{4} - 2x^{10})\mathbf{j} + cy^{6}z^{3}(-9x^{4} - 2x^{10})\mathbf{k} \text{ a gradient field}.$	
$44) \mathbf{F} = -\mathbf{x}\mathbf{i} - \mathbf{y}\mathbf{j}$	44)		
Solve the problem.		53) Consider the counter-clockwise integral $\int_{C} f(x,y) dx + g(x,y) dy$ where C is a closed path	53)
45) Consider a small region inside an elastic material such as gelatin. As the material "jiggles", this small region assillates short its equilibrium position (r. y. g.). The force that tends.	45)	c in a region where Green's Theorem applies. To evaluate the integral, should one use the	
to restore the small region to its equilibrium position (x_0 , y_0 , z_0). The force that fends		flux-divergence form or the circulation-flow form of Green's theorem? Explain.	
x_0 i - k(y - y ₀) j - k(z - z ₀) k Find a potential function f for this force field.			
5		6	

```
smooth curve y = f(x) from (a, f(a)) to (b, f(b)), show that the flux across the curve is
    \int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = k[(a^2 + (f(a))^2)^{1/2} - (b^2 + (f(b))^2)^{1/2}]
47) In thermodynamics, the differential form of the internal energy of a system is dU = T dS - 47)
    P dV, where U is the internal energy, T is the temperature, S is the entropy, P is the
    pressure, and V is the volume of the system. The First Law of Thermodynamics asserts that
    dU is an exact differential. Using this information, justify the thermodynamic relation \frac{\partial T}{\partial V}
     -\frac{\partial P}{\partial S}.
he equation for the plane tangent to the parametrized surface S at the point P.
48) S is the cylinder \mathbf{r}(\theta, z) = 2 \cos \theta \mathbf{i} + 2 \sin \theta \mathbf{j} + z \mathbf{k}; P is the point corresponding to
                                                                                                                     48)
   (\theta, z) = \left(\frac{\pi}{2}, 6\right)
the problem.
49) For some inexact differential forms df, a function g(x, y, z) can be found such that dh = g(x, 49)
   y, z) df is exact. When it exists, the function g(x,y,z) is called an "integrating factor". Show
   that g(x, y, z) = \frac{yz}{x} is an integrating factor for the inexact differential df = -\frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{y} dy
   \frac{1}{z} dz.
 the vector field in the plane along with its horizontal and vertical components at a representative assortment of
s on the circle x^2 + y^2 = 4.
50) \mathbf{F} = -\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}
                                                                                                                     50)
the problem.
51) Assuming C is a closed path , what is special about the integral \int_C 7x^6y^5 dx + 5x^7y^4 dy? 51)
    Give reasons for your answer.
52) Find the values of a, b and c that make
                                                                                                                     52)
    \mathbf{F} = 8y^{6}z^{4}(ax^{3} + bx^{9})\mathbf{i} + 48y^{5}z^{4}(-9x^{4} - 2x^{10})\mathbf{j} + cy^{6}z^{3}(-9x^{4} - 2x^{10})\mathbf{k} a gradient field.
53) Consider the counter-clockwise integral \int_{C} f(x,y) dx + g(x,y) dy where C is a closed path 53) _
    in a region where Green's Theorem applies. To evaluate the integral, should one use the
    flux-divergence form or the circulation-flow form of Green's theorem? Explain.
```

MULTIPLE CHOICE. Choose	the one alternative that l	best completes the staten	nent or answers the quest	ion.	Evaluate
Calculate the work done by th	e force F along the path (~ r	1 1		61
54) $\mathbf{F} = xe^{8x^2}\mathbf{i} + e^{7y}\mathbf{j} + e^{5y}\mathbf{j}$	$5^{\mathbb{Z}}\mathbf{k}$; the path is $C_1 \cup C_2$ w	vhere C ₁ is the straight lir	ne from (0, 0, 0) to (1, 1, 0)	54)	
and C ₂ is the straight	t line from (1, 1, 0) to (1, 1,	, 1)			Evaluate
A) W = $\frac{e^8 - 1}{16} + \frac{e^7}{16}$	$\frac{1}{7} - \frac{1}{7} + \frac{e^5 - 1}{5}$	B) W = $\frac{e^8 - 1}{16} + \frac{e^8}{16}$	$\frac{7}{7}$ - 1		62
C) W = $\frac{e^8}{16} + \frac{e^7}{7} + \frac{e^7}{7}$	e ⁵ 5	D) W = $\frac{e^8 - 1}{8} + \frac{2}{3}$	$\frac{e^7 - 2}{7} + \frac{e^5 - 1}{5}$		Solve th
Find the potential function f for	or the field F.				03
55) $\mathbf{F} = -\frac{1}{x}\mathbf{i} + \frac{1}{y}\mathbf{j} - \frac{1}{z}\mathbf{k}$				55)	
A) $f(x, y, z) = \frac{1}{x^2} - \frac{1}{x^2}$	$\frac{1}{y^2} + \frac{1}{z^2} + C$	B) $f(x, y, z) = ln (y)$	y − x − z) + C		
C) $f(x, y, z) = \frac{1}{x^2 y^2 z}$	$\frac{1}{z^2} + C$	D) $f(x, y, z) = \ln\left(\frac{y}{x}\right)$	$\left(\frac{v}{z}\right) + C$		64
Using Green's Theorem, comp	ute the counterclockwise	circulation of F around	the closed curve C.		
56) $\mathbf{F} = \sin 6y\mathbf{i} + \cos 10x\mathbf{j}$; C is the rectangle with v	ertices at $(0, 0), \left(\frac{\pi}{10}, 0\right), \left(\frac{\pi}{1}\right)$	$\left(\frac{\pi}{0}, \frac{\pi}{6}\right)$, and $\left(0, \frac{\pi}{6}\right)$	56)	
A) $-\frac{2}{3}\pi$	B) $\frac{1}{3}\pi$	C) $-\frac{1}{3}\pi$	D) 0		Use Chal
Solve the problem					65
57) The shape and densit z-axis.	ty of a thin shell are indic	ated below. Find the radi	us of gyration about the	57)	
Shell: portion of the or Density: $\delta = 3$	$\operatorname{cone} x^2 + y^2 - z^2 = 0 \text{ betw}$	where $z = 1$ and $z = 3$			Solve th
A) $R_z = \sqrt{5}$	B) $R_Z = \sqrt{\frac{5}{2}}$	C) $R_{Z} = 0$	D) $R_z = 120\sqrt{2}\pi$		66
Using Green's Theorem, calcul	late the area of the indica	ited region.			
58) The circle $\mathbf{r}(t) = (7 \cos \theta)$	$\mathrm{s} \mathrm{t})\mathbf{i} + (7 \sin \mathrm{t})\mathbf{j}, 0 \leq \mathrm{t} \leq 2 \pi$			58)	
Α) 7π	B) 14π	C) 49π	D) 2π		Evaluate
Calculate the flux of the field I 59) $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j}$; the curr	F across the closed plane ve C is the closed counter	curve C. clockwise path around th	e triangle with vertices at	(0, 59)	67
A) – 2	B) 0	C) 12	D) 4		
Evaluate. The differential is ex	act.				
60) $\int_{(0, 0, 0)}^{(1, 1, 1)} 9x^8y^7z^4 d$	$x + 7x^9y^6z^4 dy + 4x^9y^7z^2$	³ dz		60)	Evaluate
A) 0	B) 1	C) 3	D) $\frac{1}{2}$		68
A) 0	D) 1	C) 5	$D_{j}\frac{1}{3}$		

aluate the surface integral of g	over the surface S.			
61) S is the cylinder $y^2 + z^2$	$= 9, z \ge 0$ and $4 \le x \le 7; g$	(x, y, z) = z		61)
A) 54	B) 198	C) 18	D) 27	
aluate the line integral of f(x,y) along the curve C.			
62) $f(x, y) = y + x, C: x^2 + y^2$	2 = 36 in the first quadran	nt from (6, 0) to (0, 6)		62)
A) 72	B) 144	C) 36	D) 0	
ve the problem.				
63) The shape and density z-axis.	of a thin shell are indicate	d below. Find the mome	ent of inertia about the	63)
Shell: upper hemispher Density: δ = 5	e of $x^2 + y^2 + z^2 = 25$ cut	by the plane z = 0		
A) $I_Z = 125\pi$	B) $I_Z = \frac{12500}{3}\pi$	C) $I_{Z} = \frac{625}{2}\pi$	D) $I_Z = 1250\pi$	
64) The shape and density z-axis.	of a thin shell are indicate	d below. Find the radius	s of gyration about the	64)
Shell: upper hemispher Density: δ = 1	$e \text{ of } x^2 + y^2 + z^2 = 25 \text{ cut}$	by the plane $z = 0$		
A) $R_Z = \sqrt{10}\pi$	B) $R_Z = \sqrt{\frac{50}{3}}$	C) $R_Z = \sqrt{\frac{100}{3}}$	D) $R_{Z} = 125\pi$	
e Stokes' Theorem to calculate 65) $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} + y \mathbf{k}$; C: the plane formed from the :	the circulation of the fiele e counter-clockwise path x-axis, y-axis, $x = 1$ and y	Id F around the curve C around the perimeter of $y = 4$	in the indicated direction . the rectangle in the x-y	65)
A) 16	B) 8	C) -16	D) - 8	
lve the problem.				
66) The shape and density of z-axis.	of a thin shell are indicate	d below. Find the mome	ent of inertia about the	66)
Shell: portion of the cor Density: $\delta = 2$	$x^2 + y^2 - z^2 = 0 \text{ betwee}$	n $z = 1$ and $z = 3$		
A) $I_Z = 160$	B) $I_Z = 80\sqrt{2}$	C) $I_Z = 160\pi$	D) $I_Z = 80\sqrt{2}\pi$	
aluate the line integral along t	he curve C.			
67) $\int_{C} \left[6x^2 + 9e^{9y} + \frac{1}{z+1} \right]$	ds , C is the path from (0	, 0, 0) to (1, 1, 1) given b	yy:	67)
$C_1: \mathbf{r}(t) = \mathbf{ti}, \ 0 \le t \le 1$				
C2: $\mathbf{r}(t) = 1 + t\mathbf{j}, \ 0 \le t \le 1$	-1			
A) $15 + 9e^9 + \ln 2$	B) $24 + 10e^9 + \ln 2$	C) $7 + e^9$	D) $5 \pm e^9$	
1,10.50 . 112	2,21,100 1112	2,7 . 2	2,0.0	
aluate the surface integral of g	over the surface S.	- 10 - () a	(0)
68) S is the plane x + y + z A) 240	= 3 above the rectangle 0 B) - $15\sqrt{3}$	$\leq x \leq 5$ and $0 \leq y \leq 2$; g(x, C) -60	$y_{z} = 3z$ D) $60\sqrt{3}$	68)
	.,	-7	-, , -	

Solve the problem.				
69) The shape and density	of a thin shell are indicat	ed below. Find the moment	of inertia about the	69)
Shell: portion of the co Density: $\delta = 3$	ne $x^2 + y^2 - z^2 = 0$ betwee	en $z = 3$ and $z = 4$		
A) $I_Z = 525\pi$	B) $I_{Z} = \frac{525}{2}\sqrt{2}$	C) I _Z = $\frac{525}{2}\sqrt{2}\pi$	D) $I_{Z} = 525$	
Find the divergence of the field	F.			
70) $\mathbf{F} = -2\mathbf{x}^{\mathbf{a}}\mathbf{i} + 7\mathbf{x}\mathbf{y}\mathbf{j} + 7\mathbf{x}\mathbf{z}\mathbf{k}$ A) $-16\mathbf{x}^7 + 7\mathbf{y} + 7\mathbf{z}$	B) -2	C) -16x ⁷ + 14x - 2	D) -16x ⁷ + 14x	70)
Find the flux of the vector field	F across the surface S in t	he indicated direction.		
71) $\mathbf{F} = xz\mathbf{i} + yz\mathbf{j} + \mathbf{k}$, S is t outward	he cap cut from the spher	$e x^2 + y^2 + z^2 = 4$ by the pla	ane $z = 1$, direction is	71)
A) $\frac{15}{2}\pi$	B) $-\frac{15}{2}\pi$	C) $\frac{3}{2}\pi$	D) 15π	
Calculate the area of the surface	S.			
72) S is the cap cut from the	te paraboloid $z = \frac{9}{20} - 5x^2$	- 5y ² by the cone $z = \sqrt{x^2}$	+ y2	72)
A) $\frac{1}{150} [2\sqrt{2} + 1]$	$B) \frac{\pi}{75} [2\sqrt{2} - 1]$	$C) \frac{\pi}{150} [2\sqrt{2} - 1]$	D) $\frac{\pi}{75} [82\sqrt{82} - 1]$	
Calculate the circulation of the f 73) $\mathbf{F} = x^2y^3\mathbf{i} + x^2y^3\mathbf{j}$; curv (3, 0), (3, 2), and (0, 2)	field F around the closed we C is the counterclockwi	curve C. se path around the rectangl	e with vertices at (0, 0),	73)
A) 108	B) - 36	C) 0	D) -72	
Find the flux of the curl of field	F through the shell S.			
74) $F = -8zi + 3xj + 7yk; S$	is the portion of the cone	$z = 3\sqrt{x^2 + y^2}$ below the pla	ane $z = 2$	74)
A) $\frac{8}{3}\pi$	B) $-\frac{4}{3}\pi$	C) $-\frac{8}{3}\pi$	D) $-\frac{2}{3}\pi$	
Evaluate. The differential is exa	ct.			
75) $\int_{(0, 0, 0)}^{(1, 1, 1)} 8xe^{4x^2+8y^2}$	$+7z^2 dx + 16ye^{4x^2+8y^2+}$	$7z^2 dy + 14ze^{4x^2 + 8y^2 + 7z^2}$	dz	75)
A) 0	B) e ¹⁹ – 1	C) e ¹⁹ – 3	D) $e^4 + e^8 + e^7 - 1$	
Use Stokes' Theorem to calculat 76) $\mathbf{F} = 5\mathbf{y}\mathbf{i} + 4\mathbf{x}\mathbf{j} - 2\mathbf{z}^3\mathbf{k}$; C	e the circulation of the find: The portion of the plane	eld F around the curve C in 2x + 3y + 9z = 4 in the first of	the indicated direction quadrant	. 76)
A) $\frac{4}{3}$	B) $-\frac{4}{3}$	C) 0	D) -1	

Evaluate the line integral along the curve C.							
77) $\int_{-\infty}^{-\infty}$	$\frac{1}{(2+y^2+z^2)}$ ds, C is t	he path given by:			77)		
C1:r	$C_1 : r(t) = (3 \cos t)t + (3 \sin t)t from (3, 0, 0) to (0, 3, 0)$						
C2: I	$(t) = (3 \sin t)\mathbf{i} + (3 \cos t)\mathbf{i}$	t) k from $(0, 3, 0)$ to $(0, 0, 3)$)				
C2: 1	$C_{3}: \mathbf{r}(\mathbf{t}) = (3 \sin t)\mathbf{i} + (3 \cos t)\mathbf{k} \text{ from } (0, 0, 3) \text{ to } (3, 0, 0)$						
- 3/ -	2	n 1	π	D) 1			
A)	0	$B) - \frac{\pi}{2}$	$C) \frac{1}{6}$	$D) -\frac{\pi}{2}$			
Solve the prob	lem.						
78) The	shape and density of a	a thin shell are indicated b	elow. Find the radius of g	gyration about the	78)		
z-ax	18. . "	1.:	l 2				
Shell	: nose of the parabo	$x^2 + y^2 = 2z$ cut by th	e plane $z = 3$				
Dens	sity: $\delta = \frac{1}{\sqrt{x^2 + y^2 + 1}}$						
A)	$R_{z} = \frac{1}{\sqrt{18}} \sqrt{18}$	B) $R_7 = 144\pi$	C) $R_{7} = 3$	D) $R_7 = \sqrt{3}$			
,	2 3	.,					
Evaluate. The	lifferential is exact.						
79) (⁽⁵⁾	(2,8) $(2xy^2 - 2xz^2) dy$	$(+2x^2y dy - 2x^2z dz)$			79)		
<i>i j</i> (0, ((2xy 2x2)(0)	C 2X y dy 2X 2 dz					
(d) A)	-3000	B) 0	C) 1700	D) -1500			
Evaluate the li	ne integral along the	curve C.					
80) \int_{C}	$\frac{x^2 + y^2}{z^2}$ ds, C is the c	$\operatorname{rurve} \mathbf{r}(t) = (2\sin 6t)\mathbf{i} + (2\cos 6t)\mathbf{i}$	$\cos 6t)\mathbf{j} + 5t\mathbf{k}, \ 2 \le t \le 4$		80)		
	169		a) 13	- 91			
A)	25	$B) \frac{1}{25}$	$C) \frac{1}{25}$	$D) = \frac{1}{400}$			
Using Green's	Theorem, compute th	e counterclockwise circu	lation of F around the clo	osed curve C.			
81) F = ($-y - e^y \cos x$) $\mathbf{i} + (y - e^y)$	y sin x) j ; C is the right lob	e of the lemniscate r ² = co	s 2θ that lies in the	81)		
first	quadrant.	1	1				
A)	1	B) $\frac{1}{4}$	C) $\frac{1}{2}$	D) 0			
		•	-				
Find the flux o	f the vector field F ac	ross the surface S in the i	ndicated direction.				
82) F = z	k , S is the surface of	the sphere $x^2 + y^2 + z^2 = 1$	6 in the first octant , dired	ction away from the	82)		
origi	n						
A)	16π	B) 0	C) $\frac{64}{2}\pi$	D) $\frac{32}{2}\pi$			
			3	3			

Find the gradient field F of the 83) $f(x, y, z) = x^3 e^{6X} + y^3$ A) $F = (3 + 6x)x^2 e^6$ B) $F = (3 + 6x)x^2 e^6$ C) $F = (2 + (x)x^2)e^6$	e function f. $i_{z_{0}}^{i_{z_{0}}}$ $x_{i} + (x_{3}e^{6x} + 3y^{2}z^{6})_{j} + (x_{i} + 3y^{2}z^{6})_{j} + (y_{3}z^{5})_{k}$ $x_{i} + 3y^{2}z^{6}_{j} + (y_{3}z^{5})_{k}$	$x^3e^{6x} + 6y^3z^5)\mathbf{k}$		83)	Test the vector field F to det 91) $\mathbf{F} = \left(\frac{\mathbf{e}^{\mathbf{X}} + \mathbf{e}^{-\mathbf{X}}}{\mathbf{y}\mathbf{z}}\right)\mathbf{i} + \left(\frac{\mathbf{e}^{\mathbf{X}}}{\mathbf{x}}\right)\mathbf{i}$ A) Not conservat	ermine if it is conservative $\frac{e^{-x} + e^{x}}{y^{2}z} j + \left(\frac{e^{x} + e^{-x}}{yz^{2}}\right) k$ vive	e. B) Conservative		91)
D) $\mathbf{F} = (3 + 6x)x^2e^{6x}$	$x_1 + 3y_2 + 6z_3 k$ i + $y_z^2 = y_z^3 + y_z^3 z_5 k$				Calculate the work done by	the force F along the path	С.		
Calculate the circulation of the	field F around the close	ed curve C			92) $\mathbf{F} = -5\mathbf{z}\mathbf{i} + 6\mathbf{x}\mathbf{j} + 7\mathbf{y}\mathbf{j}$	k ; C: $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}$, $0 \le t$	≤1		92)
84) $\mathbf{F} = xy^2 \mathbf{i} + x^2 y \mathbf{j}$; curve	e C is the counterclockw	ise path around $C_1 \cup C_2 : C$	$r_1: \mathbf{r}(t) \ 9 \ \cos t\mathbf{i} + 9 \ \sin t\mathbf{j}, \ 0 \le t$	t 84)	A) $W = 16$	B) W = $\frac{1}{3}$	C) $W = 4$	D) $W = 8$	
$\leq \pi$					Find the flux of the vector fi	eld F across the surface S	in the indicated direction	n.	
A) 0	B) 162	C) 81	D) 9		93) $F = xi + yj + z^3k;$	β is portion of the cone z =	$3\sqrt{x^2 + y^2}$ between $z = 3$	and $z = 6$; direction is	93)
Find the flow of the mode of the	-,	e, en			outward	p) 1604	C) 1604	802	
85) $\mathbf{F} = \mathbf{x}^5 \mathbf{v} \mathbf{i} - \mathbf{z} \mathbf{k}$; S is po	a F across the surface S ortion of the cone $z = 2\sqrt{2}$	1000000000000000000000000000000000000	x = 1; direction is outward	85)	$A) = \frac{1}{5}$	$B) = \frac{\pi}{5}$	$C) - \frac{\pi}{5}$	$D) - \frac{\pi}{5}$	
A) $\frac{1}{6}\pi$	B) $-\frac{1}{12}$	C) $-\frac{1}{2}\pi$	D) $-\frac{1}{6}\pi$	·	Calculate the area of the sur 94) S is the portion of	face S. the paraboloid z = 3x ² + 3y	v^2 that lies between $z = 2$	and $z = 4$	94)
86) $F = 4xi + 4yj + 2k$, S	is the surface cut from t	ne bottom of the paraboloid	$1 z = x^2 + y^2$ by the plane	86)	A) $\frac{\pi}{54} [65\sqrt{65} - 12]$	7√17]	B) $\frac{1}{27} [65\sqrt{65} - 1]$	7√17]	
z = 2, direction is out A) 12π	ward B) 56π	С) –112π	D) 72π		C) $\frac{\pi}{27} [65\sqrt{65} - 1]$	7√17]	D) $\frac{\pi}{9}[65\sqrt{65} - 17]$	7√17]	
87) $\mathbf{F} = \frac{z^2}{25} \mathbf{k}$; S is the upp A) $\frac{25}{2} \pi$	ber hemisphere of $x^2 + y$ B) $-\frac{25}{2}$	$x^{2} + z^{2} = 25$; direction is out C) $-\frac{25}{2}\pi$	tward D) $\frac{25}{2}$	87)	Using Green's Theorem, fin 95) $\mathbf{F} = -\frac{1}{4(x^2 + y^2)^2}\mathbf{i}$	d the outward flux of F ac ; ; C is the region defined by	ross the closed curve C. 7 the polar coordinate ine	equalities $1 \le r \le 3$ and	95)
Using Green's Theorem, comp	ute the counterclockwi	se circulation of F around t	he closed curve C.		$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$				
88) $\mathbf{F} = -\sqrt{x^2 + y^2}\mathbf{i} + \sqrt{x}$ and $0 \le \theta \le \pi$	$\frac{1}{2} + y^2 \mathbf{j}$; C is the region of	lefined by the polar coordin	nate inequalities $4 \le r \le 9$	88)	A) $\frac{26}{81}$	B) $\frac{52}{81}$	C) 0	D) $-\frac{52}{81}$	
A) 97	B) 0	C) 45	D) 130		Using the Divergence Theor 96) $\mathbf{F} = 3xy^2\mathbf{i} + 3x^2y\mathbf{i} + 3x^2y\mathbf{i}$	em, find the outward flux	t of F across the boundar rom the solid cylinder x ²	y of the region D. + $v^2 < 9$ by the planes $z = 0$	96)
Find the required quantity giv 89) Moment of inertia L	en the wire that lies alo about the z-axis where	ng the curve r and has den $\mathbf{r}(t) = (3 \sin 4t)\mathbf{i} + (3 \cos 4t)\mathbf{i}$	isity ð . i + e6tk 0 < t < 1 [.]	89)	and $z = 7$, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	
$\delta(x, y, z) = z^2$	about the 2-axis, where	$I(t) = (0.511 \pm 0)I + (0.005 \pm 0)$	$+e^{-\mathbf{x}}, 0 \le t \le 1$	····	A) $\frac{1701}{2}\pi$	B) 3402π	C) 1701π	D) $\frac{1701}{4}\pi$	
A) $I_{z} = \frac{1}{2c}$		B) $I_{Z} = \frac{1}{72}$							
$\frac{1}{36}$		- 72	123/2 (11 - 22/2)		Find the flux of the curl of fi 97) $\mathbf{F} = (\mathbf{x} - \mathbf{y})\mathbf{i} + (\mathbf{x} - \mathbf{z})\mathbf{i}$	ield F through the shell S. + $(y-z)k$: S is the portion of	f the cone $z = 4\sqrt{x^2 + y^2}$ h	pelow the plane $z = 3$	97)
C) $I_Z = \frac{1}{2}(e^{12} - 1)$		D) $I_z = \frac{1}{72} [(144 + 3)]$	$(144 + 36)^{5/2} = (144 + 36)^{5/2}$		$A) - \frac{9}{\pi}\pi$	$B) \frac{9}{2}$	C) $\frac{9}{\pi}$	D) $-\frac{9}{\pi}$	
Find the flux of the curl of fiel	d F through the shell S.				8	4	8	4	
90) $\mathbf{F} = (z - y)\mathbf{i} + (x - z)\mathbf{j}$	+ $(z - x)\mathbf{k}$; S: $\mathbf{r}(r, \theta) = rco$	$\sin i + r\sin \theta \mathbf{j} + (1 - r^2)\mathbf{k}, 0 \le r$	≤ 1 and $0 \leq \theta \leq 2\pi$	90)	Evaluate. The differential is	exact.			
A) -4π	Β) 2π	C) –2π	D) 4π		98) $\int_{(0, 0, 0)}^{(\pi/7, \pi/24, \pi/8)}$	$7\sin 7xdx + 6\sec^2 6ydy$	- 4 cos 4z dz		98)
					A) 0	B) 4	C) 2	D) 1	
		11					12		

					99)
	z^8			8×7	
	A) $\mathbf{F} = \left[7x^6y^{10} + \frac{4x^3}{z^8}\right]\mathbf{i}$	$+10x^7y^9\mathbf{j}-\frac{8x^4}{z^9}\mathbf{k}$	B) $\mathbf{F} = 7x^6y^{10}\mathbf{i} + 10^{10}\mathbf{i}$	$3x^7y^9\mathbf{j} - \frac{8x^7}{z^9}\mathbf{k}$	
	C) $\mathbf{F} = (7x^6 + 4x^3)\mathbf{i} + 10^6$	$y^9 \mathbf{j} + \frac{8}{z^9} \mathbf{k}$	D) $\mathbf{F} = (7x^6 + 4x^3)\mathbf{i}$	$+10y^9\mathbf{j}-\frac{8}{z^9}\mathbf{k}$	
Use Stokes	Theorem to calculate $A = -4y^3 \mathbf{i} + 4y^3 \mathbf{i} + 7z^3 \mathbf{k}$	the circulation of the fi	eld F around the curve (araboloid $x^2 + x^2 = z$ cut	C in the indicated direction by the cylinder $x^2 + y^2 = 4$	1.
100) 1	A) -96π	B) -192π	С) 192π	D) 96π	100)
Using the D 101) F 1	Divergence Theorem , find $\mathbf{x} = x^2\mathbf{i} + y^2\mathbf{j} + z\mathbf{k}$; D: the	nd the outward flux of solid cube cut by the c	F across the boundary of ordinate planes and the	of the region D. planes $x = 1$, $y = 1$, and $z =$	101)
	A) 3	B) 1	C) 2	D) 4	
Evaluate th 102) f(the line integral of $f(x,y)$ $(x, y) = x^2 + y^2$, C: $y = 4$	along the curve C. $x + 2, 0 \le x \le 3$			102)
	A) 79√17	B) 237	C) 237 $\sqrt{17}$	D) 543 $\sqrt{17}$	
Find the div	vergence of the field F.				
100) 7	$y = \frac{yj - xk}{1/2}$				103)
103) F	$(y^2 + x^2)^{1/2}$				
103) F	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$	D) 0	
103) F	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ux of the vector field F	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction.	D) 0	
103) F Find the flu 104) F fr	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F $F = 7x\mathbf{i} + 7y\mathbf{j} + 7z\mathbf{k}$, S is room the origin	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface S in the surface of the sphere	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. the x ² + y ² + z ² = 1 in the f	D) 0 first octant, direction away	104)
103) F Find the flu 104) F fr	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F $F = 7x\mathbf{i} + 7y\mathbf{j} + 7z\mathbf{k}$, S is rom the origin A) 0	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface S in the surface of the spher B) $\frac{7}{2}\pi$	C) $\frac{-x^2}{(y^2 + x^2)^{3/2}}$ the indicated direction. $e x^2 + y^2 + z^2 = 1$ in the form C) $\frac{7}{4}\pi$	D) 0 first octant, direction away D) $\frac{7}{3}\pi$	104)
103) F Find the flu 104) F fr Solve the p	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F F = 7xi + 7yj + 7zk, S is rom the origin A) 0 problem.	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface S in the surface of the spherence B) $\frac{7}{2}\pi$	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. e x ² + y ² + z ² = 1 in the f C) $\frac{7}{4}\pi$	D) 0 first octant, direction away D) $\frac{7}{3}\pi$	104)
103) F Find the flu 104) F fi Solve the p 105) F	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F $z = 7x\mathbf{i} + 7y\mathbf{j} + 7z\mathbf{k}$, S is rom the origin A) 0 roblem. Find a field $\mathbf{G} = P(x, y)\mathbf{i}$	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface 5 in the surface of the spher B) $\frac{7}{2}\pi$ + Q(x, y)j in the xy-plan	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. e x ² + y ² + z ² = 1 in the f C) $\frac{7}{4}\pi$	D) 0 first octant, direction away D) $\frac{7}{3}\pi$ at any point (a, b) \neq (0, 0),	104)
103) F Find the flu 104) F fi Solve the p 105) F C c	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ux of the vector field F $F = 7x\mathbf{i} + 7y\mathbf{j} + 7z\mathbf{k}$, S is rom the origin A) 0 roblem. Find a field $\mathbf{G} = P(x, y)\mathbf{i}$ G is a vector of magnitulockwise direction.	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface S in the surface of the spher B) $\frac{7}{2}\pi$ + Q(x, y)j in the xy-plat de $\sqrt{a^2 + b^2}$ tangent to	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. e x ² + y ² + z ² = 1 in the f C) $\frac{7}{4}\pi$ ne with the property that the circle x ² + y ² = a ² + b	D) 0 first octant, direction away D) $\frac{7}{3}\pi$ at any point (a, b) \neq (0, 0), p^2 and pointing in the	104)
Find the flu 104) F fr Solve the p 105) F C c	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F F = 7xi + 7yj + 7zk, S is rom the origin A) 0 roblem. Find a field G = P(x, y)i G is a vector of magnitu lockwise direction. A) yi - xj	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface 5 in the surface of the spher B) $\frac{7}{2}\pi$ + Q(x, y)j in the xy-plan de $\sqrt{a^2 + b^2}$ tangent to B) $-yi + xj$	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. $e x^2 + y^2 + z^2 = 1$ in the f C) $\frac{7}{4}\pi$ ne with the property that the circle $x^2 + y^2 = a^2 + 1$ C) $x\mathbf{i} + y\mathbf{j}$	D) 0 first octant, direction away D) $\frac{7}{3}\pi$ at any point (a, b) \neq (0, 0), p^2 and pointing in the D) xi - yj	104)
Find the flu 104) F fr Solve the p 105) F C C Using Greee 106) F ii	$(y^{2}+x^{2})^{1/2}$ A) $\frac{x^{2}}{(y^{2}+x^{2})^{3/2}}$ ax of the vector field F F = 7xi + 7yj + 7zk, S is rom the origin A) 0 roblem. Find a field $G = P(x, y)i$ G is a vector of magnitu lockwise direction. A) yi - xj en's Theorem, compute F = (-4x + 4y)i + (2x - 4y)i	B) $\frac{x^2 - y^2}{(y^2 + x^2)^{3/2}}$ across the surface S in the surface of the sphere B) $\frac{7}{2}\pi$ + Q(x, y)j in the xy-plane de $\sqrt{a^2 + b^2}$ tangent to B) $-yi + xj$ the counterclockwise events of the region bound	C) $\frac{-x^2}{(y^2+x^2)^{3/2}}$ the indicated direction. e x ² + y ² + z ² = 1 in the f C) $\frac{7}{4}\pi$ ne with the property that the circle x ² + y ² = a ² + 1 C) xi + yj circulation of F around t ided above by y = -2x ² + 1	D) 0 first octant, direction away D) $\frac{7}{3}\pi$ at any point (a, b) \neq (0, 0), p ² and pointing in the D) xi - yj the closed curve C. + 112 and below by y = 5x ²	104) 105) 106)

Evaluate the line integral of f(x,y) a	Evaluate the line integral of $f(x,y)$ along the curve C.						
107) $f(x, y) = x, C: y = x^2, 0 \le x \le \frac{\sqrt{15}}{2}$							
A) $\frac{63}{8}$	B) 21/4	C) 63	D) 21				
Find the potential function f for the	e field F.						
108) $\mathbf{F} = (y - z)\mathbf{i} + (x + 2y - z)\mathbf{j}$	$-(x+y)\mathbf{k}$			108)			
A) $f(x, y, z) = xy + y^2 - y^2$	xz – yz + C	B) $f(x, y, z) = x + y^2 - xz$	- yz + C				
C) $f(x, y, z) = x(y + y^2) - x(y + y^2)$	xz - yz + C	D) $f(x, y, z) = xy + y^2 - x$	c – y + C				
Using Green's Theorem, find the outward flux of F across the closed curve C.							
109) $\mathbf{F} = (x - y)\mathbf{i} + (x + y)\mathbf{j}$; C is	the triangle with vertices a	at (0, 0), (7, 0), and (0, 3)		109)			
A) 63	B) 0	C) 42	D) 21				
Using the Divergence Theorem, fir 110) $\mathbf{F} = e^{yz}\mathbf{i} + 6y\mathbf{j} + 4z^2\mathbf{k}$; D:	the outward flux of F action the solid sphere $x^2 + y^2 + z^2$	cross the boundary of the $z^2 \le 16$	region D.	110)			
A) 512π	В) 1536л	C) $\frac{256}{3}\pi$	D) 1536π				
Evaluate the surface integral of the 111) $g(x,y,z) = x^2 + y^2 + z^2$; S i planes x = 1, y = 1, and z =	function g over the surface s the surface of the cube for = 1	ce S. ormed from the coordinate	e planes and the	111)			
A) 7	B) $\frac{7}{2}$	C) $\frac{5}{2}$	D) 5				
Calculate the work done by the for 112) $\mathbf{F} = -\frac{1}{25x^2}\mathbf{i} + \frac{2z}{5x}\mathbf{j} + \frac{1}{50x^2}$ A) $W = \frac{\sqrt{2}}{5} + \frac{1}{100}\pi^2$ C) $W = \frac{\sqrt{2}}{5} + \frac{1}{200}\pi^2$	ce F along the path C. k; C: $\mathbf{r}(t) = \frac{\cos 5t}{5}\mathbf{i} + \frac{\sin 5t}{5}$	$j + 2tk, 0 \le t \le \frac{\pi}{20}$ B) W = $\frac{\sqrt{2} + 2}{5} + \frac{1}{200}\pi^2$ D) W = $\frac{\sqrt{2}}{10} + \frac{1}{200}\pi^2$		112)			
Using the Divergence Theorem, fir 113) $\mathbf{F} = (y-x)\mathbf{i} + (z-y)\mathbf{j} + (z-x)\mathbf{j}$ and $z = 2$	Id the outward flux of F a k ; D: the region cut from t	cross the boundary of the he solid cylinder $x^2 + y^2 \le$	region D. 4 by the planes $z = 0$	113)			
A) -8π	Β) 8π	C) -8	D) 0				
114) $\mathbf{F} = z\mathbf{i} + xy\mathbf{j} + zy\mathbf{k}$; D: the s	solid cube cut by the coord	linate planes and the plane	esx = 1, y = 1, and z =	114)			
A) $\frac{1}{2}$	B) 2	C) 1	D) $\frac{1}{4}$				
Find the center of mass of the wire 115) $\mathbf{r}(t) = (-3 + 3t)\mathbf{i} + \mathbf{j} + 5t\mathbf{k}, 0$ A) $(-39, 0, 345)$	that lies along the curve r $\leq t \leq 1; \ \delta(x, y, z) = x + z^2$ B) $\left(-\frac{39}{82}, 0, \frac{345}{82}\right)$	r and has density δ. C) $\left(-\frac{39}{82}, 1, \frac{345}{82}\right)$	$D)\left(-\frac{13}{4},\frac{41}{6},345\right)$	115)			
	1	4					

Find th	e potential function f for	the field F.			
11	6) $\mathbf{F} = (ey^2 - \sin x)\mathbf{i} + 2xy\mathbf{e}$	$e^{y^2}\mathbf{j} + \mathbf{k}$			116)
	A) $f(x, y, z) = \cos x + e$	$y^2 + z + C$	B) $f(x, y, z) = \cos x + e^{y}$	$r^{2}(x+z) + C$	
	C) $f(x, y, z) = \cos x + x$	$xzey^2 + C$	D) $f(x, y, z) = \cos x + xe$	$ey^2 + z + C$	
Calcula	ate the work done by the f	orce F along the path C.			
11	7) $\mathbf{F} = \frac{y}{z}\mathbf{i} + \frac{x}{z}\mathbf{j} + \frac{x}{y}\mathbf{k}$; C: $\mathbf{r}(\mathbf{t})$	$) = t^8 \mathbf{i} + t^7 \mathbf{j} + t^5 \mathbf{k} , 0 \le t \le 1$			117)
	A) W = 20	B) W = 1	C) W = $\frac{7}{3}$	D) W = 0	
Calcula	te the circulation of the fi	eld F around the closed cu	rve C.		
11	8) $\mathbf{F} = -\frac{3}{5}x^2y\mathbf{i} - \frac{3}{5}xy^2\mathbf{j};$ cu	rve C is r(t) = 5 cos ti + 5 si	n tj, $0 \le t \le 2\pi$		118)
	A) – 3	B) 0	C) $-\frac{6}{5}$	D) - 6	
Find th	e flux of the curl of field I	F through the shell S.			
11	9) $F = 2yi + 3xj + \cos(z)k$;	S: $\mathbf{r}(\mathbf{r}, \theta) = 5 \sin \phi \cos \theta \mathbf{i} + 5$	$\sin \phi \sin \theta \mathbf{j} + 5 \cos \phi \mathbf{k}, 0 \leq$	$\theta \le 2\pi$ and $0 \le \phi \le \frac{\pi}{2}$	119)
	A) 25	B) -50π	С) 25л	D) 50π	
Find th 12	the flux of the vector field F (0) $\mathbf{F} = 8x\mathbf{i} + 8y\mathbf{j} + z\mathbf{k}$; S is poutward (away from or	across the surface S in the portion of the plane x + y + igin)	indicated direction. $z = 5$ for which $0 \le x \le 1$ ar	ad $0 \le y \le 4$; direction is	120)
	A) 80	B) 90	C) 180	D) – 50	
Find th 12	the flux of the curl of field I (1) $\mathbf{F} = -2x^2y\mathbf{i} + 2xy^2\mathbf{j} + z^2$ plane	F through the shell S. k ; S is the portion of the pa	raboloid 2 - x^2 - y^2 = z that	at lies above the x-y	121)
	A) $\frac{16}{3}\pi$	B) 32	C) 32π	D) 4π	
Using (12	Green's Theorem, calculat 2) The astroid $\mathbf{r}(t) = (9 \cos A) \frac{243}{8} \pi$	the area of the indicated ^{3}t)i + (9 sin ³ t)j, $0 \le t \le 2\pi$ B) 2π	region. C) <u>243</u> π	D) $\frac{243}{4}\pi$	122)
Find th	e required quantity given	the wire that lies along th	e curve r and has density	۵	
12	3) Radius of gyration R_{y} a	bout the v-axis, where r(t)	$= (5t \cos t)\mathbf{i} + \frac{10}{\sqrt{2}t^3/2\mathbf{i}}$	+ $(5t \sin t)\mathbf{k}, -1 \le t < 1$:	123)
	$\delta(x, y, z) = 2$		3 (
	A) $R_y = 125$	B) $R_y = 0$	C) $R_y = \frac{25}{2}$	D) $R_y = \frac{5}{3}\sqrt{3}$	

Evaluate the	line integral along the	curve C.			
124) \int_{C}	124) $\int_{C} (y+z) ds$, C is the path from (0, 0, 0) to (5, -5, 1) given by:				
C	_ : r (t) = 5t ² i − 5tj, 0 ≤ t ≤ 1				
C	$\mathbf{r}(t) = 5\mathbf{i} - 5\mathbf{j} + (t-1)\mathbf{k}, 1$	≤ t ≤ 2			
1	A) $-\frac{125}{12}\sqrt{5} - \frac{29}{12}$	B) $-\frac{13}{4}$	C) $-\frac{125}{12}\sqrt{5} + \frac{29}{12}$	D) $-\frac{59}{2}$	
Find the sur	face area of the surface !	5.			
125) S i	is the upper cap cut from	the sphere $x^2 + y^2 + z^2 =$	25 by the cylinder $x^2 + y^2$	2 = 16	125)
1	A) 10	B) -20π	C) 20π	D) 160π	
Calculate th	e work done by the forc	e F along the path C.	o		126)
120) F	$= -7 \text{ yI} + 7 \text{ xJ} + 22^{\circ} \text{ K}, \text{ C. } \text{ I}$	B W = 56	C) W = 112	D) $W = 0$	120)
	., .,	5) 11 30	0,00 112	5) 11 0	
Find the gra	dient field F of the func	tion f.			107)
127) f()	$(x, y, z) = \ln (x^4 + y^0 + z^0)$				127)
1	A) $\mathbf{F} = \frac{1}{x^4} + \frac{1}{y^8} \mathbf{J} + \frac{1}{z^8} \mathbf{K}$				
	B) $\mathbf{F} = \frac{1}{x^4}\mathbf{i} + \frac{1}{y^8}\mathbf{j} + \frac{1}{z^8}\mathbf{k}$				
	C) $\mathbf{F} = \frac{4}{x} \ln(y^8 + z^8)\mathbf{i} + \frac{4}{y^8}$	$\frac{8}{3}\ln(x^4+z^8)\mathbf{j}+\frac{8}{z}\ln(x^4+z^8)\mathbf{j}$	+ y ⁸) k		
I	D) $\mathbf{F} = \frac{4x^3}{x^4 + y^8 + z^8} \mathbf{i} + \frac{4x^4}{x^4} \mathbf{i}$	$\frac{8x^7}{4+y^8+z^8}\mathbf{j} + \frac{8x^7}{x^4+y^8+z^8}$	$\frac{1}{3}$ k		
Using the D	ivergence Theorem, find	l the outward flux of F ac	ross the boundary of the	region D.	
128) F	= xy i + y ² j - 2yz k ; D: the	e solid wedge cut from the	e first quadrant by the pla	ney + $z = 8$ and the	128)
pa	rabolic cylinder $x = 16 -$	25y ²	2/252	50504	
1	A) $\frac{37376}{1875}$	B) $\frac{40448}{1875}$	C) $\frac{36352}{1875}$	D) $\frac{72704}{1875}$	
	10/0	10/0	10/0	10/0	
Find the cen	ter of mass of the wire t	hat lies along the curve r	and has density ð .		
129) r (t	$= (2 \cos 3t)\mathbf{i} + (2 \sin 3t)\mathbf{j}$	$\mathbf{j} + 6t\mathbf{k}, 0 \le t \le 2\pi; \delta(x, y, z)$	$=1(1 + \sin 3t \cos 3t)$		129)
1	A) $\left[0, 0, \frac{1}{2}(12\pi - 1)\right]$	$B)\left[0,0,\frac{3}{2}(\pi+1)\right]$	C) $\left[0, 0, \frac{3}{2}\pi\right]$	D) (0, 0, 3π)	
Calculate th	e flow in the field F alor	ng the path C.			
130) F	$=-\frac{zy}{4\sqrt{x^2+y^2+z^2}}i+\frac{1}{4}$	$\frac{zx}{\sqrt{x^2 + y^2 + z^2}}\mathbf{j} + \frac{1}{3\sqrt{x^2}}\mathbf{j}$	$\frac{z^3}{x^2+y^2+z^2}$ k , C is the curve	2	130)
r (t	$= 4\cos 4t\mathbf{i} + 4\sin 4t\mathbf{j} + 1$	3t k , 0 ≤ t ≤ 1	-		
1	A) 21	B) <u>61</u> 9	C) $\frac{61}{3}$	D) 0	

Evaluate the work done betwee 131) $\mathbf{F} = 4 \sin 4x \cos 9y \cos \left(\frac{1}{2}\pi, \frac{2}{9}\pi, \frac{\pi}{5}\right)$	131)			
A) $W = -2$	B) W = 2	C) W = 1	D) W = 0	
Evaluate the line integral alon	g the curve C.			
132) $\int_{C} (y+z) ds , C \text{ is th}$	ne straight-line segment x =	= 0, y = 4 - t, z = t from (0,	4, 0) to (0, 0, 4)	132)
A) 16√2	B) 16	C) 8	D) 0	
Using Green's Theorem, comp 133) $\mathbf{F} = xy\mathbf{i} + x\mathbf{j}$; C is the	oute the counterclockwise of triangle with vertices at (0,	circulation of F around th 0), (8, 0), and (0, 2)	e closed curve C.	133)
A) $-\frac{40}{3}$	B) $\frac{40}{3}$	C) $\frac{16}{3}$	D) 0	
Find the flux of the vector fiel 134) $\mathbf{F} = -3\mathbf{i} + 10\mathbf{j} + 7\mathbf{k}$, S A) 280	d F across the surface S in is the rectangular surface z B) 196	the indicated direction. = 0, $0 \le x \le 4$, and $0 \le y \le 2$ C) 0	7, direction k D) -84	134)
Apply Green's Theorem to ev	aluate the integral.			
135) $\oint_C (8y + x) dx + (y)$	+ 3x) dy			135)
C: The circle $(x - 4)^2$	$(y - 6)^2 = 16$			
A) -40	B) -400	C) -80π	D) 80π	
Calculate the area of the surfa	ce S.			
136) S is the portion of th 14	e plane 2x + 3y + 6z = 3 tha 14	t lies within the cylinder > 28	$x^2 + y^2 = 4$	136)
A) $\frac{11}{3}\pi$	B) $\frac{11}{3}$	C) $\frac{26}{3}\pi$	D) $\frac{2}{3}\pi$	
Find the center of mass of the	wire that lies along the cu	rve r and has density δ.		
137) $\mathbf{r}(t) = (6t^2 - 2)\mathbf{i} + 5t\mathbf{k}$	$-1 \le t \le 1; \ \delta(x, y, z) = 4\sqrt{24}$	4x + 73	()	137)
A) $\left(\frac{384}{365}, 0, 0\right)$	B) $\left[\frac{30/2}{5}, 2, 0\right]$	C) $\left(\frac{30/2}{5}, 0, 0\right)$	D) $\left[\frac{384}{365}, 2, 0\right]$	
Solve the problem.				
138) The shape and densi	138)			
mass. Shell: portion of the	$r_{r}^{2} = r_{r}^{2} + r_{r}^{2} + r_{r}^{2} - 100 t$	ast lies in the first octant		
Density: constant	sphere $x^2 + y^2 + z^4 = 100 \text{ tr}$	lat lies in the lifst octant		
A) $\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)$	B) (5, 5, 5)	C) (10, 10, 10)	$D)\left(\frac{5}{2},\frac{5}{2},\frac{5}{2}\right)$	

Apply Green's Theorem to evaluate the integral. 139) $\oint (y^2 + 5) dx + (x^2 + 1) dy$ 139) C: The triangle bounded by x = 0, x + y = 1, y = 0B) $\frac{2}{2}$ A) 0 C) 4 D) -3 Solve the problem. 140) The shape and density of a thin shell are indicated below. Find the coordinates of the center of 140) mass. Shell: cylinder $x^2 + z^2 = 49$ bounded by y = 0 and y = 2Density: constant D) $\left[0, 1, \frac{14}{\pi}\right]$ A) $\left[0, 0, \frac{14}{\pi}\right]$ B) (0, 1, 7) C) (0, 1, 14) Evaluate the line integral along the curve C. 141) $\int_{C} \left(\frac{2}{z}\right)^{1/3} ds, C \text{ is the curve } \mathbf{r}(t) = (2t^{3} \cos t)\mathbf{i} + (2t^{3} \sin t)\mathbf{j} + 2t^{3}\mathbf{k}, 0 \le t \le 3\sqrt{2}$ 141) A) $36(4 - \sqrt{2})$ C) 18(4 − √2) D) $36(4 + \sqrt{2})$ B) 0 Using Green's Theorem, compute the counterclockwise circulation of F around the closed curve C. 142) $\mathbf{F} = (x^2 + y^2)\mathbf{i} + (x - y)\mathbf{j}$; C is the rectangle with vertices at (0, 0), (4, 0), (4, 2), and (0, 2) 142) A) 0 B) 24 C) -8 D) 8 143) $\mathbf{F} = (x - e^x \cos y)\mathbf{i} + (x + e^x \sin y)\mathbf{j}$; C is the lobe of the lemniscate $r^2 = \sin 2\theta$ that lies in the first 143) quadrant. A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) 1 D) 0 Evaluate the work done between point 1 and point 2 for the conservative field F. 144) $\mathbf{F} = 10xe^{5x^2-8y^2-2z^2}\mathbf{i} - 16ye^{5x^2-8y^2-2z^2}\mathbf{j} - 4ze^{5x^2-8y^2-2z^2}\mathbf{k}$; P₁(0, 0, 0), P₂(1, 1, 1) 144) A) W = $e^5 + e^{-8} + e^{-2} - 1$ B) W = 0C) W = e^{-5} D) W = $e^{-5} - 1$ Find the surface area of the surface S. 145) S is the portion of the surface 3x + 4z = 4 that lies above the rectangle $7 \le x \le 10$ and $4 \le y \le 8$ in the 145) x-y plane A) 102 B) 15 D) 60 C) 75 Solve the problem. 146) The shape and density of a thin shell are indicated below. Find the coordinates of the center of 146) mass. Shell: cone $x^2 + y^2 - z^2 = 0$ between z = 3 and z = 4Density: constant A) $\left[0, 0, \frac{74}{21}\pi\right]$ B) $\left[0, 0, \frac{101}{39}\pi\right]$ C) $\left[0, 0, \frac{74}{21}\right]$ D) $\left[0, 0, \frac{101}{39}\right]$

18

Find the divergence of the field F 156) F = -6x7i + 3v7i + 8z7k				156)
A) 0		B) $-42x^6 + 21y^6 + 5$	56z ⁶	
C) 35		D) $-6x^6 + 3y^6 + 8z^6$	6	
Find the potential function f for t	he field F.			
157) $\mathbf{F} = 2xe^{x^2+y^2}\mathbf{i} + 2ye^{x^2+y^2}\mathbf{i}$	^{-y2} j			157)
A) $f(x, y, z) = e^{x^2} + e^{y^2}$	² + C	B) $f(x, y, z) = 2e^{x^2 + 2z^2}$	$-y^2 + C$	
C) $f(x, y, z) = e^{x^2 + y^2} + e^{x^2 + y^2}$	- C	D) $f(x, y, z) = \frac{e^{x^2 + 2}}{2}$	$\frac{y^2}{z} + C$	
Evaluate the line integral of f(x,y)	along the curve C.			
158) $f(x, y) = \frac{x^2}{\sqrt{1+4y}}, C: y =$	$x^2, 0 \le x \le 2$			158)
A) 4	B) $\frac{8}{3}$	C) 8	D) 0	
Evaluate the surface integral of th	e function g over the su	face S.		
159) $g(x, y, z) = \frac{y}{\sqrt{16y^2 + 1}}; 5$	is the surface of the para	bolic cylinder 12y ² + 6z	x = 48 bounded by the	159)
planes $x = 0, x = 1, y = 0$), and $z = 0$	1		
A) 12	B) 8	C) $\frac{1}{3}$	D) 2	
Calculate the work done by the fo	orce F along the path C.			
160) F = 4y i + \sqrt{z} j + (6x + 2z)	$\mathbf{k}; \mathbf{C}: \mathbf{r}(\mathbf{t}) = \mathbf{t}\mathbf{i} + \mathbf{t}^2\mathbf{j} + \mathbf{t}\mathbf{k}, 0$	≤ t ≤ 2		160)
A) W = $\frac{80}{3} + 20\sqrt{2}$	B) W = $40 + 20\sqrt{2}$	C) W = 0	D) W = $\frac{80}{3} + \frac{16\sqrt{2}}{5}$	
Evaluate the surface integral of th	e function g over the su	face S.		
161) $g(x, y, z) = x + z$; S is the x + z = 4 and $y = 2$	surface of the wedge for	med from the coordinat	e planes and the planes	161)
A) $\frac{224}{3} + 32\sqrt{2}$	B) $\frac{176}{3} + 32\sqrt{2}$	C) 96 + 32√2	D) $\frac{224}{3} + 8\sqrt{2}$	
Find the flux of the vector field F	across the surface S in th	e indicated direction.		
162) $F = 8xi + 8yj + 3k; S is$ "	nose" of the paraboloid z	$=7x^2 + 7y^2$ cut by the p	plane $z = 4$; direction is	162)
outward			-, 116	
A)	Β) 20π	C) – 20π	D) $\frac{\pi}{7}$	
	6			
Find the surface area of the surfa	ce 5.		: d	163)
Find the surface area of the surface 163) S is the intersection of the x ²	the plane $3x + 4y + 12z = 7$	and the cylinder with s	$1 \text{ des } y = 4x^2 \text{ and } y = 8 - 4$	
Find the surface area of the surface 163) S is the intersection of the x^2 A) $\frac{104}{3}$	The plane $3x + 4y + 12z = 7$ B) $\frac{104}{9}$	and the cylinder with s C) $\frac{13}{9}$	D) $\frac{13}{18}$	105)
Find the surface area of the surface 163) S is the intersection of the x^2 A) $\frac{104}{3}$	The plane $3x + 4y + 12z = 7$ B) $\frac{104}{9}$	and the cylinder with s C) $\frac{13}{9}$	D) $\frac{13}{18}$	103)

Evaluate. The differential is exact. 164) $\int_{(1, 1, 1)}^{(2, 4, 2)} \frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{y} dy$	$\frac{1}{z}$ dz			164)
A) $\ln \frac{16}{3}$	B) 0	C) ln 8	D) ln 16	
Find the divergence of the field F. 165) $\mathbf{F} = \frac{y\mathbf{j} - z\mathbf{k}}{(y^2 + z^2)^{1/2}}$				165)
A) $\frac{3(y^2 + z^2)}{(y^2 + z^2)^{3/2}}$	B) 0	C) $\frac{z^2 - y^2}{(y^2 + z^2)^{3/2}}$	D) $\frac{y^{2}-z^{2}}{(y^{2}+z^{2})^{3/2}}$	
Find the mass of the wire that lies a	long the curve r and has	lensity δ .		
166) $C_1: \mathbf{r}(t) = (6 \cos t)\mathbf{i} + (6 \sin t)\mathbf{i}$	t) $\mathbf{j}, 0 \le t \le \frac{\pi}{2};$			166)
C_2 : $r(t) = 6j + tk, 0 \le t \le 1;$	$\delta = 7t^5$			
A) $\frac{21}{160}\pi^5$ units		B) $\frac{7}{6} \left(\frac{1}{64} \pi^5 + 1 \right)$ units		
C) $\frac{21}{5}\pi^5$ units		D) $\frac{7}{6} \left(\frac{3}{32} \pi^6 + 1 \right)$ units		
Find the flux of the vector field F ac	ross the surface S in the i	ndicated direction.		
167) $\mathbf{F} = 4x\mathbf{i} + 4y\mathbf{j} + z^5\mathbf{k}$; S is provide outward	rtion of the cylinder $x^2 + y$	$y^2 = 16$ between $z = 0$ and	z = 4; direction is	167)
Α) 512π	B) 512	C) 256	D) -512π	
168) $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$, S is the planes $x = 5$, $y = 1$, and	te surface of the rectangulate $1 = 3$, direction is outward	ar prism formed from the d	coordinate planes and	168)
A) 440	B) 100	C) 220	D) 110	
Find the mass of the wire that lies a	long the curve r and has	lensity ð .		
169) $\mathbf{r}(t) = (7 \cos t)\mathbf{i} + (7 \sin t)\mathbf{j} + (7 \sin t)\mathbf{j}$	+ 7tk, $0 \le t \le 2\pi$; $\delta = 8$			169)
A) 784 $\pi\sqrt{2}$ units	B) $14\pi\sqrt{2}$ units	C) $112\pi\sqrt{2}$ units	D) 16π units	
Find the gradient field F of the fund	ction f.			
170) $f(x, y, z) = e^{x^7} + y^{10} + z^3$				170)
A) $\mathbf{F} = x^6 e^{x^7} + y^{10} + z^3 \mathbf{i}$	$+y^9e^{x^7}+y^{10}+z^3j+z^2e^{y^7}$	$x^7 + y^{10} + z^3 \mathbf{k}$		
B) $\mathbf{F} = 7x^{6}e^{x^{7}} + y^{10} + z^{3}$	$i + 10y^9 e^{x^7} + y^{10} + z^3 j + 3$	$3z^2e^{x^7} + y^{10} + z^3\mathbf{k}$		
C) $\mathbf{F} = x^7 e^{x^7} + y^{10} + z^3 \mathbf{i}$	$+y^{10}e^{x^7} + y^{10} + z^3 \mathbf{j} + z^3$	$x^{7} + y^{10} + z^{3}k$		
D) $\mathbf{F} = 7x^{6}e^{x^{7}}\mathbf{i} + 10y^{9}e^{y^{7}}\mathbf{i}$	10 j + 3z ² e z ³ k			

171) $f(x, y, z) = \frac{xz + xy + yz}{xyz}$		171)	Calculate the flow in the field F al 178) $\mathbf{F} = ey^2 \mathbf{i} + \frac{1}{v} \mathbf{j} + 4\mathbf{k}$, C is	ong the path C. the curve $\mathbf{r}(t) = 6t^2\mathbf{i} + 3t\mathbf{j}$	+ (-2 - 5t) k , 1 \leq t \leq 4		178)
A) $\mathbf{F} = -\frac{1}{x^2}\mathbf{i} - \frac{1}{y^2}\mathbf{j} - \frac{1}{z^2}\mathbf{k}$	B) $\mathbf{F} = -\frac{1}{x^2yz}\mathbf{i} - \frac{1}{xy^2z}\mathbf{j} - \frac{1}{xyz^2}\mathbf{k}$		A) $\frac{2}{3}(e^{144} - e^9) + \ln 4 - e^{-9}$	+ 60	B) $\frac{4}{3}(e^{144} - e^9) + \ln 4$	- 60	
C) $\mathbf{F} = \frac{1}{x^2 yz} \mathbf{i} + \frac{1}{xy^2 z} \mathbf{j} + \frac{1}{xyz^2} \mathbf{k}$	D) $\mathbf{F} = \frac{1}{x^2}\mathbf{i} + \frac{1}{y^2}\mathbf{j} + \frac{1}{z^2}\mathbf{k}$		C) $\frac{2}{3}(e^{144} - e^9) + \ln 4 - e^{16}$	- 60	D) $6(e^{144} - e^9) + \ln 4 -$	60	
Evaluate the surface integral of g over the surface S. 172) S is the portion of the cone $z = 3\sqrt{x^2 + y^2}$ between A) $\frac{2}{27}\sqrt{10\pi}$ B) $\frac{2}{243}\sqrt{10\pi}$	$ \begin{array}{l} z = 0 \mbox{ and } z = 1; g(x, y, z) = z - y \\ C) \ \frac{2}{27} \sqrt{10} \qquad D) \ \frac{2}{81} \sqrt{10} \pi \end{array} $	172)	Find the gradient field F of the function 179) $f(x, y, z) = z \sin (x + y + z)$ A) F = $-\cos xi - \cos yj + B$ B) F = $\cos xi + \cos yj + B$	nction f. z) - (sin z – z cos z) k (sin z + z cos z) k			179)
Find the flux of the curl of field F through the shell S.			C) $\mathbf{F} = z \cos(x + y + z)\mathbf{i}$	$+ z \cos(x + y + z)\mathbf{j} + (\sin(x + y + z)\mathbf{j})\mathbf{j}$	$(x + y + z) + z\cos(x + y + z))$	ĸ	
173) $\mathbf{F} = e^{X}\mathbf{i} + e^{Y}\mathbf{j} + 5xy\mathbf{k}$; S is the portion of the parabola A) -80 B) 0	loid 2 - x^2 - y^2 = z that lies above the x-y plane C) 80 D) -80 π	173)	D) $\mathbf{F} = -z \cos(x + y + z)$	$\mathbf{i} - z \cos(x + y + z)\mathbf{j} + (\sin(z))\mathbf{j}$	(x + y + z) - zcos(x + y + z))	k	
Calculate the area of the surface S. 17(4) S is the portion of the sphere $x^2 + x^2 + z^2 = 81$ be	two $r = -\frac{9}{2}$, $r = \frac{9}{2}$, $r = \frac{9}{2}$, $r = \frac{9}{2}$	174)	Using Green's Theorem, find the of $F = (-10x + 2y)\mathbf{i} + (9x - 5)\mathbf{i}$ in the first quadrant	outward flux of F across iy)j; C is the region boun	the closed curve C. ded above by $y = -5x^2 + 20$	0 and below by $y = 3x^2$	180)
$1/4$) 5 is the portion of the sphere $x^2 + y^2 + z^2 = 61$ be	tween $z = -\frac{1}{2}\sqrt{2}$ and $z = -\frac{1}{2}\sqrt{2}$	1/4)	A) 14,925	B) - 10000	C) - 10835	D) 14775	
A) $9\sqrt{2\pi}$ B) 162π	C) $81\sqrt{2}\pi$ D) $162\sqrt{2}\pi$						
That the sector Cald Fits dataset is 1010 is second the			Find the mass of the wire that lies	along the curve r and h	as density ð.		101)
lest the vector field F to determine if it is conservative.			181) $\mathbf{r}(t) = 8\mathbf{i} + (5 - 3t)\mathbf{j} + 4t\mathbf{k},$ 160	$0 \le t \le 2\pi$; $0 = 8(1 + \sin \theta)$ 80	3t)		181)
1/5) $\mathbf{F} = \begin{pmatrix} ze^{x+y} - \frac{1}{x} \end{pmatrix} \mathbf{i} + ze^{x+y} \mathbf{j} + e^{x+y} \mathbf{k}$		175)	A) $\frac{100}{3}$ + 80 π units	B) $\frac{60}{3}$ + 80 π units	C) 80π units	D) 16π units	
A) Not conservative	B) Conservative		Find the surface area of the surfac	e S.			
Solve the problem.			182) S is the paraboloid $x^2 + y$	$v^2 - z = 0$ between the pl	anes $z = 0$ and $z = 6$		182)
176) The base of the closed cubelike surface is the unit planes $x = 0$, $x = 1$, $y = 0$, and $y = 1$. The top is an a unknown. Let $\mathbf{F} = x\mathbf{i} - 4y\mathbf{j} + (z + 7)\mathbf{k}$ and suppose	square in the xy-plane. The four sides lie in the rrbitrary smooth surface whose identity is the outward flux through the side parallel to the	176)	A) $\frac{31}{3}\pi$	B) $\frac{62}{3}\pi$	C) $\frac{124}{3}\pi$	D) 31π	
yz-plane is 1 and through the side parallel to the	xz-plane is -5. What is the outward flux through		Using Green's Theorem, find the	outward flux of F across	the closed curve C.		
A) -4	B) 4		183) $\mathbf{F} = (-\mathbf{y} - \mathbf{e}\mathbf{y} \cos \mathbf{x})\mathbf{i} + (\mathbf{y} - \mathbf{first} \text{ quadrant.})$	e ^y sin x) j ; C is the right	lobe of the lemniscate $r^2 = 0$	cos 2θ that lies in the	183)
C) 0	D) Not enough information to determine		A) $\frac{1}{4}$	B) $\frac{1}{2}$	C) 1	D) 0	
Find the potential function f for the field F.							
177) $\mathbf{F} = \frac{1}{2}\mathbf{i} - 3\mathbf{j} - \frac{\mathbf{x}}{2}\mathbf{k}$		177)	Calculate the work done by the fo	rce F along the path C.			
Z Z ²			184) $\mathbf{F} = \mathbf{t}\mathbf{i} + \frac{1}{7}\mathbf{j} + \mathbf{k}$; C: $\mathbf{r}(\mathbf{t}) = \mathbf{e}$	$e^{t}\mathbf{i} + e^{t}\mathbf{j} + (-2t^2 + t)\mathbf{k}$	-1 ≤ t ≤ 1		184)
A) $f(x, y, z) = \frac{x}{z} + C$	B) $f(x, y, z) = \frac{x}{z} - 3 + C$		A) $W = e^7 + e^{-7} + 2$	B) W = 2	C) W = $e^7 + e^{-7} - 2$	D) W = -2	
C) $f(x, y, z) = \frac{x}{z} - 3y + C$	D) $f(x, y, z) = \frac{2x}{z} - 3y + C$		Find the flux of the curl of field F	through the shell S.			
2	2		185) $\mathbf{F} = 4z\mathbf{i} - 7x\mathbf{j} + 3y\mathbf{k}$; S: \mathbf{r} (i	$(r, \theta) = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} + r$	$6r\mathbf{k}, 0 \le r \le 6 \text{ and } 0 \le \theta \le 2\pi$;	185)
			Α) 252π	B) 0	C) -252	D) -252π	

Find the potential function f f	or the field F. (7))			Solve the pro
186) $\mathbf{F} = -\left \frac{xy^2}{(1+x^2)^{3/2}}\right \mathbf{i}$	$\left \frac{1}{(1+x^2)^{1/2}} \right ^{j} + \left \frac{y}{(1+x^2)^{1/2}} \right ^{j}$	$\frac{1}{2}$ k		186)	193) The z-a
A) $f(\mathbf{x} \mathbf{x} \mathbf{z}) = \frac{1}{1}$	— + C	B) $f(x, y, z) = -$	$\frac{yz}{z}$ + C		She
$10^{1} 1(x, y, z) = \sqrt{1+1}$	$\overline{x^2}$ + ε	$2\sqrt{2}$	$\frac{1}{1+x^2} + c$		Der
C) $f(x, y, z) = \frac{yz}{\sqrt{1+x^2}}$	$\frac{2}{x^2} + C$	D) $f(x, y, z) = \frac{y}{2\sqrt{1}}$	$\frac{z}{x} + C$		A
Evaluate. The differential is e	xact.				
187) $\int_{-187}^{(\pi, \pi, \pi)} 2 \sin x dx$	o v dv sin u cos z du so	ov cipz dz		197)	194) The
(0, 0, 0)	s x dx - sin y cos z dy - co	sy shiz uz		187)	She
A) 1	B) –2	C) 0	D) 2		Der
····					A
188) $\mathbf{F} = 6\mathbf{x}\mathbf{i} + 6\mathbf{y}\mathbf{i} + 6\mathbf{z}\mathbf{k}$	Part $(5, 1, 5)$ Part $(8, 5, 9)$	the conservative field F.		188)	
A) $W = -357$	B) $W = 0$	C) $W = 663$	D) W = 357		195) The
11) 11 - 557	<i>b) W</i> = 0	C) 11 = 000	5) 11 - 557		fror
Solve the problem.					→
(189) Find a field $\mathbf{G} = P(\mathbf{x},$	y) i + Q(x, y) j in the xy-pla	ne with the property that	at any point $(a, b) \neq (0, 0)$), 189)	
G is a unit vector po	inting away from the origi	n.			
G is a unit vector po	inting away from the origi	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\mathbf{x} \mathbf{i} - \mathbf{y} \mathbf{j}}$	$\mathbf{D} = \frac{\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}}{\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}}$		
G is a unit vector point G is a unit vector G is a	inting away from the origi B) x i + y j	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$		_
G is a unit vector potential A $-\frac{xi + yj}{\sqrt{x^2 + y^2}}$	inting away from the origi B) xi + yj	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$		_
G is a unit vector point $A) - \frac{xi + yj}{\sqrt{x^2 + y^2}}$ Find the required quantity gives 190) Moment of inertial	inting away from the origi B) xi + yj ven the wire that lies along	n. C) $\frac{xi - yj}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{\sqrt{x^3/2}} + (100 \cos \theta)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$.	. 100)	_
G is a unit vector point A is a unit vector point A is a unit vector point A is $-\frac{xi + yj}{\sqrt{x^2 + y^2}}$ Find the required quantity given 190) Moment of inertia I_X	inting away from the origi B) xi + yj zen the wire that lies along about the x-axis, where r(n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos x)$	$D) \frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity \delta . t) j + (10t sin t) k , 0 ≤ t ≤ 1	; 190)	_
G is a unit vector point $A) - \frac{xi + yj}{\sqrt{x^2 + y^2}}$ Find the required quantity give 190) Moment of inertia I _x $\delta(x, y, z) = \frac{5}{2}$	inting away from the origi B) xi + yj zen the wire that lies along about the x-axis, where r(n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^3/2\mathbf{i}} + (10t \cos \theta)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\mathbf{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$; 190)	
G is a unit vector point A) $-\frac{xi + yj}{\sqrt{x^2 + y^2}}$ Find the required quantity give 190) Moment of inertia I _x $\delta(x, y, z) = \frac{5}{y^2 + z^2}$	inting away from the origi B) xi + yj ren the wire that lies along about the x-axis, where r(n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^{3/2}\mathbf{i}} + (10t \cos \theta)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$; 190)	
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the second distributic	inting away from the origi B) xi + yj ven the wire that lies along about the x-axis, where r(B) I _X = 100	n. C) $\frac{\mathbf{x}\mathbf{i} - \mathbf{y}\mathbf{j}}{\sqrt{\mathbf{x}^2 - \mathbf{y}^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^{3/2}\mathbf{i}} + (10t \cos t)$ C) $\mathbf{I}_{\mathbf{X}} = 0$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_{\mathbf{X}} = 50$; 190)	
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the required quantity of the required quantity gives a standard distribution of the standard distribution of the required quantity gives a standard distribution of the required qu	inting away from the origi B) xi + yj ven the wire that lies along about the x-axis, where r(B) I _X = 100 rface S.	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^3/2\mathbf{i}} + (10t \cos C)$ C) $I_X = 0$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_X = 50$; 190)	A 196) The mas
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the required quantity of the required quantity gives a standard distribution of the standard distress distress	inting away from the origi B) xi + yj ven the wire that lies along about the x-axis, where r(B) I _X = 100 rface S. n the plane z = 6y by the cy	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den (t) $= \frac{20}{3}\sqrt{2t^3/2\mathbf{i}} + (10t \cos C)$ C) $I_X = 0$ rlinder $x^2 + y^2 = 36$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_X = 50$; 190) 191)	A 196) The mas She Der
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the standard distress distress	inting away from the origit B) $xi + yj$ wen the wire that lies along about the x-axis, where r(B) $I_x = 100$ rface S. n the plane $z = 6y$ by the cy B) $12\sqrt{37}\pi$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos C)$ C) $I_x = 0$ rlinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity $\boldsymbol{\delta}$. t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $I_X = 50$ D) $6\sqrt{37}\pi$; 190) 191)	A 196) The may She Der A
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the required quantity of the standard distribution of the standard distress distribution	inting away from the origi B) $xi + yj$ wen the wire that lies along about the x-axis, where r(B) $I_X = 100$ rface S. a the plane $z = 6y$ by the cy B) $12\sqrt{37\pi}$ wire that lies along the cu	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos C)$ C) $I_X = 0$ linder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density 8 .	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $I_X = 50$ D) $6\sqrt{37}\pi$; 190) 191)	→ Aj 196) The mas She Der Aj
G is a unit vector point of a unit vector point of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the required quantity gives a standard distribution of the required quantity of the standard distribution of the standard distress distribution	inting away from the origit B) $xi + yj$ wen the wire that lies along about the x-axis, where r(B) $I_X = 100$ rface S. a the plane $z = 6y$ by the cy B) $12\sqrt{37\pi}$ wire that lies along the cu $, 0 \le t \le 1; \delta(x, y, z) = -\frac{x}{\sqrt{80-1}}$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos C)$ C) $I_X = 0$ d'linder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density δ .	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $I_X = 50$ D) $6\sqrt{37}\pi$; 190) 191) 192)	→ Aj 196) The mas She Der Aj Test the vecto
G is a unit vector point of a unit vector point of the required quantity gives a straight of the sum of the required quantity of the sum of the	inting away from the origit B) xi + yj wen the wire that lies along about the x-axis, where r(B) I _X = 100 rface S. a the plane z = 6y by the cy B) $12\sqrt{37}\pi$ wire that lies along the cu , 0 ≤ t ≤ 1; $\delta(x, y, z) = \frac{x}{\sqrt{80} + 1}$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^3/2\mathbf{i}} + (10t \cos 3t)$ C) $I_X = 0$ Plinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density δ . $\overline{+24z}$ (8, 16, 1)	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $I_X = 50$ D) $6\sqrt{37}\pi$; 190) 191) 192)	→ A) 196) The mas She Der A) Test the vecto 197) F =
G is a unit vector point of a unit vector point of the required quantity gives a second structure of the required quantity gives a second structure of the required quantity gives a second structure of the second structure	inting away from the origit B) xi + yj wen the wire that lies along about the x-axis, where r(B) $I_x = 100$ rface S. a the plane z = 6y by the cy B) $12\sqrt{37}\pi$ wire that lies along the cu y, $0 \le t \le 1$; $\delta(x, y, z) = \frac{x}{\sqrt{80+1}}$ B) $\left(\frac{16}{3}, \frac{32}{3}, 8\right)$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^{3/2}\mathbf{i}} + (10t \cos C)$ C) $I_x = 0$ Plinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density δ . $\overline{+24z}$ C) $\left[\frac{8}{3}, \frac{16}{3}, 3\right]$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $I_X = 50$ D) $6\sqrt{37}\pi$ D) $(4, 8, 6)$; 190) 191) 192)	A 196) The mas She Der A Test the vecto 197) F = A
G is a unit vector point of a unit vector point of the required quantity gives a second structure of the required quantity gives a second structure of the required quantity gives a second structure of the second structure	inting away from the origit B) xi + yj wen the wire that lies along about the x-axis, where r(B) $I_x = 100$ rface S. n the plane $z = 6y$ by the cy B) $12\sqrt{37\pi}$ wire that lies along the cu $0 \le t \le 1$; $\delta(x, y, z) = \frac{x}{\sqrt{80 + 4}}$ B) $\left(\frac{16}{3}, \frac{32}{3}, 8\right)$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2t^{3/2}\mathbf{i}} + (10t \cos C)$ C) $I_x = 0$ Plinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density δ . $\overline{+24z}$ C) $\left(\frac{8}{3}, \frac{16}{3}, 3\right)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_X = 50$ D) $6\sqrt{37}\pi$ D) $(4, 8, 6)$; 190) 191) 192)	A 196) The mas She Der A Test the vecto 197) F = A Using the Div
G is a unit vector point of a unit vector point of the required quantity gives a state of the required quantity gives a state of the required quantity gives a state of the s	inting away from the origit B) xi + yj wen the wire that lies along about the x-axis, where r(B) I _x = 100 rface S. n the plane z = 6y by the cy B) $12\sqrt{37\pi}$ wire that lies along the cu $0 \le t \le 1$; $\delta(x, y, z) = \frac{x}{\sqrt{80 + 4}}$ B) $\left(\frac{16}{3}, \frac{32}{3}, 8\right)$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos C)$ C) $I_x = 0$ Plinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ urve r and has density δ . $\overline{x^2 + 24z}$ C) $\left(\frac{8}{3}, \frac{16}{3}, 3\right)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_X = 50$ D) $6\sqrt{37}\pi$ D) $(4, 8, 6)$; 190) 191) 192)	→ A. 196) The mas She Der A. Test the vecto 197) F = A. Using the Div 198) F =
G is a unit vector point of a unit vector point of the required quantity gives a state of the required quantity gives a state of the required quantity gives a state of the s	inting away from the origit B) xi + yj wen the wire that lies along about the x-axis, where r(B) I _x = 100 rface S. n the plane z = 6y by the cy B) $12\sqrt{37\pi}$ wire that lies along the cu y, 0 ≤ t ≤ 1; $\delta(x, y, z) = \frac{x}{80 + 100 + 1$	n. C) $\frac{x\mathbf{i} - y\mathbf{j}}{\sqrt{x^2 - y^2}}$ g the curve r and has den t) $= \frac{20}{3}\sqrt{2}t^{3/2}\mathbf{i} + (10t \cos C)$ C) $I_x = 0$ Plinder $x^2 + y^2 = 36$ C) $36\sqrt{37}$ trve r and has density δ . $\overline{x^2 + 24z}$ C) $\left(\frac{8}{3}, \frac{16}{3}, 3\right)$	D) $\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$ sity δ . t) $\mathbf{j} + (10t \sin t)\mathbf{k}, 0 \le t \le 1$ D) $\mathbf{I}_X = 50$ D) $6\sqrt{37}\pi$ D) $(4, 8, 6)$; 190) 191) 192)	A 196) The mas She Der A Test the vecto 197) $\mathbf{F} =$ A Using the Div 198) $\mathbf{F} =$ the

blem. shape and density of a thin shell are indicated below. Find the moment of inertia about the 193) xis. ll: "nose" of the paraboloid $x^2 + y^2 = 2z$ cut by the plane z = 1nsity: $\delta = \frac{1}{\sqrt{x^2 + y^2 + 1}}$ $I_Z = \frac{8}{3}\pi$ C) $I_Z = \frac{2}{3}\pi$ B) $I_Z = 2\pi$ D) $I_Z = 16\pi$ shape and density of a thin shell are indicated below. Find the coordinates of the center of 194) ss. ll: "nose" of the paraboloid $x^2 + y^2 = 2z$ cut by the plane z = 1nsity: $\delta = \sqrt{x^2 + y^2 + 1}$ $D)\left[0,\,0,\frac{7}{12}\right]$ C) $\left[0, 0, \frac{7}{15}\right]$ $\left[0, 0, \frac{4}{3}\right]$ B) $\left[0, 0, \frac{8}{3}\right]$ flow **F** of a fluid in a plane is illustrated below. At which point or points would $\nabla \times \mathbf{F}$ point out 195) n the page? В B) A and C D) C C) B Α shape and density of a thin shell are indicated below. Find the coordinates of the center of 196) ss. ll: "nose" of the paraboloid $x^2 + y^2 = 2z$ cut by the plane z = 3sity: $\delta = \sqrt{x^2 + y^2 + 1}$ $\left[0, 0, \frac{96}{11}\right]$ $D)\left[0, 0, \frac{9}{11}\right]$ B) $\left[0, 0, \frac{15}{8}\right]$ C)(0, 0, 8)r field F to determine if it is conservative. $-\cos x \cos y\mathbf{i} + \sin x \sin y\mathbf{j} - \sec^2 z\mathbf{k}$ 197)) Not conservative B) Conservative rergence Theorem, find the outward flux of F across the boundary of the region D. $-16xz^{7}i + 12yj + 2z^{8}k$; D: the solid wedge cut from the first quadrant by the plane z = 3y and 198) elliptic cylinder $x^2 + 16y^2 = 169$ 6591 B) $\frac{6591}{4}$ C) $\frac{768}{169}$ D) $\frac{507}{4}$ 8

25

A) $\frac{3}{2}$				
2	B) 15	C) - 15	D) $\frac{15}{2}$	
the circulation of the field F = y ³ i + x ² j; curve C is the and (0, 1)	I F around the closed curv e counterclockwise path a	ve C. round the triangle with ve	ertices at (0, 0), (2, 0),	215)
A) $\frac{11}{6}$	B) 0	C) $\frac{5}{6}$	D) $\frac{1}{2}$	
he work done by the forc	e F along the path C.			
$\mathbf{F} = \frac{1}{\mathbf{x} + 8}\mathbf{i} + \mathbf{j} + 3\mathbf{k}; \text{ C: } \mathbf{r}(\mathbf{t}) =$	$t^{9}\mathbf{i} + t^{9}\mathbf{j} + t\mathbf{k}, 0 \le t \le 1$			216)
A) W = ln $\left(\frac{9}{72}\right) + 4$	B) W = $\ln\left(\frac{9}{8}\right)$	C) W = $\ln\left(\frac{9}{8}\right) + 12$	D) W = ln $\left(\frac{9}{8}\right) + 4$	
The differential is exact.				
$\int_{(0,0,0)}^{(1,1,1)} (-8x - 5x^4y^6) dx$	$x - 6x^5y^5 dy - 40z^4 dz$			217)
A) -11	B) 0	C) -12	D) -13	
urface area of the surface	S.			
A) $\frac{57}{2}\pi$	-z = 0 below the plane z B) $\frac{171}{2}\pi$	$= 12$ C) $\frac{343}{6}\pi$	D) 57π	218)
radient field F of the func	tion f.			
$f(x, y, z) = \frac{x^2 + y^2 + z^2}{x^7}$				219)
A) $\mathbf{F} = \frac{9x^2 + 7y^2 + 7z^2}{x^8} \mathbf{i}$	$+\frac{2y}{x^7}\mathbf{j}+\frac{2z}{x^7}\mathbf{k}$	B) $\mathbf{F} = \frac{7}{x^8} (x^2 + y^2 + z^2) \mathbf{i}$	$+\frac{2y}{x^7}\mathbf{j}+\frac{2z}{x^7}\mathbf{k}$	
C) $\mathbf{F} = \frac{-5}{x^6}\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$		D) $\mathbf{F} = \frac{-5x^2 - 7y^2 - 7z^2}{x^8}$	$\mathbf{i} + \frac{2\mathbf{y}}{\mathbf{x}^7}\mathbf{j} + \frac{2\mathbf{z}}{\mathbf{x}^7}\mathbf{k}$	
p roblem. The shape and density of a z-axis.	۱ thin shell are indicated b	pelow. Find the moment of	f inertia about the	220)
Shell: upper hemisphere o Density: δ = 5	$f x^2 + y^2 + z^2 = 25$ cut by t	the plane $z = 0$		
A) $I_Z = \frac{625}{2}\pi$	B) $I_Z = 125\pi$	C) $I_{Z} = \frac{12500}{3}\pi$	D) $I_Z = 1250\pi$	
	he circulation of the field $F = y^3 \mathbf{i} + x^2 \mathbf{j}$; curve C is the and $(0, 1)$ A) $\frac{11}{6}$ he work done by the force $F = \frac{1}{x+8} \mathbf{i} + \mathbf{j} + 3\mathbf{k}$; C: $\mathbf{r}(\mathbf{t}) =$ A) $W = \ln\left(\frac{9}{72}\right) + 4$ The differential is exact. $\int_{(1, 1, 1)}^{(1, 1, 1)} (-8x - 5x^4y^6) dx^2 + y^2$ A) -11 arface area of the surface is 5 is the paraboloid $x^2 + y^2$ A) $\frac{57}{2}\pi$ radient field F of the funct $f(x, y, z) = \frac{x^2 + y^2 + z^2}{x^7}$ A) $\mathbf{F} = \frac{9x^2 + 7y^2 + 7z^2}{x^8} \mathbf{i}$ C) $\mathbf{F} = \frac{-5}{x^6} \mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$ problem. The shape and density of a z-axis. Shell: upper hemisphere of Density: $\delta = 5$ A) $I_z = \frac{625}{\pi}\pi$	he circulation of the field F around the closed curve F = y ³ i + x ² j; curve C is the counterclockwise path a and (0, 1) A) $\frac{11}{6}$ B) 0 he work done by the force F along the path C. F = $\frac{1}{x+8}i + j + 3k$; C: r(t) = t ⁹ i + t ⁹ j + tk, 0 ≤ t ≤ 1 A) W = ln $\left(\frac{9}{72}\right) + 4$ B) W = ln $\left(\frac{9}{8}\right)$ The differential is exact. $\int_{(0, 0, 0)}^{(1, 1, 1)} (-8x - 5x^4y^6) dx - 6x^5y^5 dy - 40z^4 dz$ (0, 0, 0) A) -11 B) 0 arface area of the surface S. S is the paraboloid x ² + y ² - z = 0 below the plane z A) $\frac{57}{2}\pi$ B) $\frac{171}{2}\pi$ radient field F of the function f. i(x, y, z) = $\frac{x^2 + y^2 + z^2}{x^7}$ A) $\mathbf{F} = \frac{9x^2 + 7y^2 + 7z^2}{x^8}i + \frac{2y}{x^7}j + \frac{2z}{x^7}k$ C) $\mathbf{F} = \frac{-5}{x^6}i + 2yj + 2zk$ problem. The shape and density of a thin shell are indicated by zenxis. Shell: upper hemisphere of x ² + y ² + z ² = 25 cut by Density: $\delta = 5$ A) $I_z = \frac{625}{\pi}\pi$ B) $I_z = 125\pi$	he circulation of the field F around the closed curve C. $F = y^{3}i + x^{2}j; \text{ curve C is the counterclockwise path around the triangle with value (0, 1) A) \frac{11}{6} B) 0 C) \frac{5}{6}he work done by the force F along the path C.F = \frac{1}{x + 8}i + j + 3k; \text{ C: } r(t) = t^{9}i + t^{9}j + tk, \ 0 \le t \le 1 A) W = \ln\left(\frac{9}{72}\right) + 4 B) W = \ln\left(\frac{9}{8}\right) C) W = \ln\left(\frac{9}{8}\right) + 12Che differential is exact.\int_{(0, 0, 0)}^{(1, 1, 1)} (-8x - 5x^{4}y^{6}) dx - 6x^{5}y^{5} dy - 40z^{4} dz (0, 0, 0)A) -11 B) 0 C) -12urface area of the surface S.S is the paraboloid x^{2} + y^{2} - z = 0 below the plane z = 12A) \frac{57}{2}\pi B) \frac{171}{2}\pi C) \frac{343}{6}\piradient field F of the function f.i(x, y, z) = \frac{x^{2} + y^{2} + z^{2}}{x^{7}} A) F = \frac{9x^{2} + 7y^{2} + 7z^{2}}{x^{8}}i + \frac{2y}{x^{7}}j + \frac{2z}{x^{7}}k B) F = \frac{7}{x^{8}}(x^{2} + y^{2} + z^{2})iC) F = \frac{-5}{x^{6}}i + 2yj + 2zk D) F = \frac{-5x^{2} - 7y^{2} - 7z^{2}}{x^{8}}problem.The shape and density of a thin shell are indicated below. Find the moment of z-axis.Shell: upper hemisphere of x^{2} + y^{2} + z^{2} = 25 cut by the plane z = 0Density: \delta = 5A) I_{Z} = \frac{625}{\pi}\pi B) I_{Z} = 125\pi C) I_{Z} = \frac{12500}{\pi}\pi$	he circulation of the field F around the closed curve C. $F = y^{31} + x^{2};$ curve C is the counterclockwise path around the triangle with vertices at (0, 0), (2, 0), (nd (0, 1)) A) $\frac{11}{6}$ B) 0 C) $\frac{5}{6}$ D) $\frac{1}{2}$ he work done by the force F along the path C. $F = \frac{1}{x+8}\mathbf{i} + \mathbf{j} + 3\mathbf{k};$ C: $\mathbf{r}(\mathbf{t}) = t^{9}\mathbf{i} + t^{9}\mathbf{j} + t\mathbf{k}$, $0 \le \mathbf{t} \le 1$ A) $W = \ln\left(\frac{9}{72}\right) + 4$ B) $W = \ln\left(\frac{9}{8}\right)$ C) $W = \ln\left(\frac{9}{8}\right) + 12$ D) $W = \ln\left(\frac{9}{8}\right) + 4$ Che differential is exact. $\int_{(0, 0, 0)}^{(1, 1, 1)} (-8x - 5x^{4}y^{6}) dx - 6x^{5}y^{5} dy - 40z^{4} dz$ (0, 0, 0) A) -11 B) 0 C) -12 D) -13 Inface area of the surface S. S is the paraboloid $x^{2} + y^{2} - z = 0$ below the plane $z = 12$ A) $\frac{57}{2}\pi$ B) $\frac{171}{2}\pi$ C) $\frac{343}{6}\pi$ D) 57π radient field F of the function f. $i(x, y, z) = \frac{x^{2} + y^{2} + z^{2}}{x^{7}}$ A) $F = \frac{9x^{2} + 7y^{2} + 7z^{2}}{x^{8}}\mathbf{i} + \frac{2y}{x^{7}}\mathbf{j} + \frac{2z}{x^{7}}\mathbf{k}$ B) $F = \frac{7}{x^{8}}(x^{2} + y^{2} + z^{2})\mathbf{i} + \frac{2y}{x^{7}}\mathbf{j} + \frac{2z}{x^{7}}\mathbf{k}$ C) $F = -\frac{5}{x^{6}}\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$ D) $F = -\frac{5x^{2} - 7y^{2} - 7z^{2}}{x^{8}}\mathbf{i} + \frac{2y}{x^{7}}\mathbf{j} + \frac{2z}{x^{7}}\mathbf{k}$ problen. The shape and density of a thin shell are indicated below. Find the moment of inertia about the $z=x^{3}$. Shell: upper hemisphere of $x^{2} + y^{2} + z^{2} = 25$ cut by the plane $z = 0$ Density: $\delta = 5$ A) $I_{Z} = \frac{625}{2}\pi$ B) $I_{Z} = 125\pi$ C) $I_{Z} = \frac{12500}{2}\pi$ D) $I_{Z} = 1250\pi$

 Calculate the flux of the field F across the closed plane curve C. 221) F = xi + yj; the curve C is the closed counterclockwise path around the rectangle with vertices at (0, 0), (9, 0), (9, 2), and (0, 2) 					221)
	A) 85	B) 0	C) 36	D) 77	
Find the p	otential function f for the	e field F.	`		
222)	$\mathbf{F} = -\left[\frac{x}{(x^2 + y^2 + z^2)^{3/2}}\right]\mathbf{i}$	$-\left[\frac{y}{(x^2+y^2+z^2)^{3/2}}\right]\mathbf{j} - \left[\frac{y}{(x^2+y^2+z^2)^{3/2}}\right]\mathbf{j}$	$\frac{z}{(x^2 + y^2 + z^2)^{3/2}}$ k		222)
	A) $f(x, y, z) = \frac{z}{5(x^2 + y^2 - y^2)}$	$\frac{1}{(z^2)^{5/2}} + C$	B) $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2}}$	$\overline{+ z^2} + C$	
	C) $f(x, y, z) = -\frac{1}{\sqrt{x^2 + y^2}}$	$\overline{\frac{2}{2+z^2}}$ + C	D) $f(x, y, z) = \frac{3}{\sqrt{x^2 + y^2}}$	$\overline{+z^2}$ + C	
Using Gre	en's Theorem, calculate t	he area of the indicated r	egion.		
223)	The area bounded above l	by $y = 2x$ and below by $y = 2x$	$=4x^{2}$		223)
	A) $\frac{1}{6}$	B) $\frac{1}{12}$	C) $\frac{5}{24}$	D) $\frac{1}{24}$	
Calculate	the flow in the field F alo	ong the path C.			
224)	$\mathbf{F} = 3\mathbf{i} + 7\mathbf{j} + 6\mathbf{k}$; C is the cu	$\operatorname{rrve} \mathbf{r}(t) = 3 \cos 8t\mathbf{i} + 3 \sin t$	$8t\mathbf{j} + 5t\mathbf{k}$, $0 \le t \le \frac{1}{2}\pi$		224)
	A) 60 + 120π	Β) 15π	C) 18 + 120π	D) 24 + 120π	
Solve the	problem.				
225)	Find values for a, b, and c	so that $\nabla \times F = 0 \ \text{ for } F = \mathbf{a}$	$x\mathbf{i} + by\mathbf{j} + cz\mathbf{k}$.		225)
	A) $\nabla \times \mathbf{F} = 0$ for any a, b	, and c.			
	B) a = 1, b = 1, c = 1				
	C) a = 2, b = -1, c = -1				
	D) There is no possible v	way to make $\nabla \times \mathbf{F} = 0$.			
Calculate	the area of the surface S.				
226)	S is the portion of the cyli	nder $x^2 + y^2 = 4$ that lies l	between $z = 4$ and $z = 5$		226)
	Α) 18π	В) 36π	C) 4π	D) 2π	
Calculate	the circulation of the field	d F around the closed cur	ve C.		
227)	$\mathbf{F} = (-x - y)\mathbf{i} + (x + y)\mathbf{j}$, cuncentered at (5, 6)	rve C is the counterclockw	rise path around the circle	with radius 2	227)
	Α) 16π	Β) 8π	C) $8(1 + \pi)$	D) $8(1 + \pi) + 88$	
Find the d	ivergence of the field F.				
228)	$\mathbf{F} = 30\mathbf{x}\mathbf{z}^{5}\mathbf{i} + 9\mathbf{y}\mathbf{j} - 5\mathbf{z}^{6}\mathbf{k}$				228)
	A) $30z^5 + 9$	B) 9	C) $60z^5 + 9$	D) 60z ⁵	
Calculate	the flux of the field F acro	oss the closed plane curve	e C.		
229)	$\mathbf{F} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}$; the curve C is t	the counterclockwise path	around the circle $x^2 + y^2$	= 16	229)
	A) 0	Β) 8π	С) 32π	D) 64π	

230) $\mathbf{F} = x^5 y^4 \mathbf{i} + y \mathbf{j} - z \mathbf{k}; S$ direction is outward	is the portion of the parab (away from the x-y plane)	polic cylinder $z = 1 - y^2$ for	which $z \ge 0$ and $2 \le x \le 3$;	230)
A) -2	B) 2	C) 0	D) 1	
Find the required quantity giv	en the wire that lies along	the curve r and has densi	ity δ.	
231) Radius of gyration R	z about the z-axis, where r	$(t) = 4e^{10t}i + 2e^{10t}j + 6e^{10t}$	$t\mathbf{k}, 0 \le t \le 1; \delta = e^{-20t}$	231)
A) $R_Z = \sqrt{\frac{20(e^{10} - 1)}{e^{-10} - 1}}$	<u>1)</u>	B) $R_Z = \sqrt{\frac{20(e^{10} - 1)}{1 - e^{-10}}}$)	
C) $R_Z = 2\sqrt{5}$		D) $R_{Z} = 0$		
Find the surface area of the sur	face S.			
232) S is the portion of the and $1 \le y \le 7$ in the x-	e surface $6\sqrt{12}x + 6y^2 - 12$ -y plane	ln y – 12z = 0 that lies abov	ve the rectangle $0 \le x \le 8$	232)
A) 8[24 + ln 7]	B) $\frac{4}{3}[24 + \ln 7]$	C) 16[24 + ln 7]	D) 48[24 + ln 7]	
Test the vector field F to deter	nine if it is conservative.			
233) $\mathbf{F} = x^4 y^4 z^4 \mathbf{i} + x^4 y^4 z^4$	$\mathbf{z}^{4}\mathbf{j} + \mathbf{z}^{4}\mathbf{k}$			233)
A) Not conservative	e	B) Conservative		
Calculate the circulation of the	field F around the closed	curve C.		
234) $\mathbf{F} = xy\mathbf{i} + 6\mathbf{j}$, curve C	is $\mathbf{r}(t) = 3 \cos t\mathbf{i} + 3 \sin t\mathbf{j}$, 0	$\leq t \leq 2\pi$		234)
A) 18	B) 12	C) 0	D) 6	
Evaluate the surface integral o 235) S is the hemisphere x	f g over the surface S. $2 + y^2 + z^2 = 5$, $z \ge 0$; $g(x, y)$	$(z) = z^2$		235)
A) $\frac{50}{3}\pi$	B) 100π	C) $\frac{20}{3}\pi$	D) $\frac{25}{3}\pi$	·
Evaluate the line integral of f()	(v) along the curve C			
236) $f(x, y) = y^2 + x^2$. C: t	he perimeter of the circle x	$2 + v^2 = 16$		236)
Α) 64π	Β) 8π	С) 128π	D) 32π	
Using Green's Theorem, find t	he outward flux of F acros	s the closed curve C.		
237) $\mathbf{F} = \ln (x^2 + y^2) \mathbf{i} + \tan (x^2 + y^2) \mathbf{i}$	$n^{-1}\left(\frac{x}{y}\right)$; C is the region defined on the terms of terms	fined by the polar coordin	ate inequalities $1 \le r \le 8$	237)
and $0 \le \theta \le \pi$				
A) 65	B) 63	C) 0	D) 126	
Find the flux of the curl of fiel	d F through the shell S.			
$238) \mathbf{F} = 4x^2y\mathbf{i} - 4xy^2\mathbf{j} + \ln \mathbf{k}$	$\mathbf{z}\mathbf{k}$; S: $\mathbf{r}(\mathbf{r}, \theta) = \mathbf{r}\cos\theta\mathbf{i} + \mathbf{r}$	$\sin \theta \mathbf{j} + 3r\mathbf{k}, \ 0 \le r \le 3 \text{ and } 0$	$0 \le \theta \le 2\pi$	238)
A) 70	B) 162~	$() 72\pi$	D) 72	

Solve the problem. 239) Find the outward flux of a constant vector field F = C across any closed surface to which the Divergence Theorem applies.				
A) 0		B) 1		
C) F		D) Not enough inform	ation to determine	
Find the gradient field F of the fun	ction f.			
240) $f(x, y, z) = \left(\frac{x + y}{y + z}\right)^3$				240)
A) $\mathbf{F} = 3\left(\frac{\mathbf{x} + \mathbf{y}}{\mathbf{y} + \mathbf{z}}\right)^2 \mathbf{i} + \frac{3(\mathbf{x} + \mathbf{y})^2}{(\mathbf{x} + \mathbf{y})^2}$	$\frac{(x+y)^2(z+x)}{(y+z)^4}$ j - $3\frac{(x+y)^3}{(y+z)^4}$ k			
B) $\mathbf{F} = \frac{3(x+y)^2}{(y+z)^3}\mathbf{i} + \frac{3(x-y)^2}{(y+z)^3}\mathbf{i}$	$\frac{(x+y)^2(z-x)}{(y+z)^4}$ j - $3\frac{(x+y)^3}{(y+z)^4}$ k			
C) $\mathbf{F} = 3 \left(\frac{\mathbf{x} + \mathbf{y}}{\mathbf{y} + \mathbf{z}}\right)^2 \mathbf{i} + \frac{3(\mathbf{x} + \mathbf{y})^2}{(\mathbf{y} + \mathbf{z})^2} \mathbf{i}$	$\frac{(x+y)^2(z+x)}{(y+z)^4}$ j + 3 $\frac{(x+y)^3}{(y+z)^4}$ k			
D) $\mathbf{F} = 3\left(\frac{x+y}{y+z}\right)^2 \mathbf{i} + \frac{3(x+y)^2}{(y+z)^2} \mathbf{i} + \frac{3(x+y)^2}{(y+z)^2}$	$\frac{(x+y)^2(z-x)}{(y+z)^4}$ j + $3\frac{(x+y)^3}{(y+z)^4}$ k			
Find the surface area of the surface	S.			
241) S is the cap cut from the s	phere $x^2 + y^2 + z^2 = 49$ by	the cone $z = 4\sqrt{x^2 + y^2}$		241)
A) $49\left(1 - \frac{4\sqrt{17}}{17}\right)$	B) $49\left(\frac{4\sqrt{17}}{17} - 1\right)\pi$	C) $98\left(1 - \frac{4\sqrt{17}}{17}\right)\pi$	D) $49 \left(1 - \frac{4\sqrt{17}}{17}\right) \pi$	
Find the flux of the curl of field F the	hrough the shell S.			
242) $F = 8yi + 5zj + -2xk; S: r(r)$	$(\theta) = r \cos \theta \mathbf{i} + r \sin \theta \mathbf{j} + (\theta)$	4 – r^2)k, $0 \le r \le 2$ and $0 \le 6$	$0 \le 2\pi$	242)
A) -32	Β) 32π	C) -32π	D) -16π	
Calculate the flow in the field F alo	ong the path C.			
243) $F = y^2 i + z j + x k$; C is the	curve $\mathbf{r}(t) = (3 + 2t)\mathbf{i} + 4t\mathbf{j}$	$-4t\mathbf{k}$, $0 \le t \le 1$		243)
A) $\frac{32}{3}$	B) 68	C) $-\frac{40}{3}$	D) -4	
Solve the problem. 244) The shape and density of	a thin shell are indicated	helow. Find the coordinat	es of the center of	244)
mass.	a third shen are indicated	below. This the coordinat	es of the center of	
Shell: cylinder $x^2 + z^2 = 2$	5 bounded by $y = 0$ and y	= 3		
Density: constant	(10)	(2 10)		
A) $\left[0, \frac{3}{2}, 10\right]$	B) $\left[0, 0, \frac{10}{\pi}\right]$	C) $\left[0, \frac{3}{2}, \frac{10}{\pi}\right]$	$D)\left[0,\frac{3}{2},5\right]$	

Find the potential function f for 245) $\mathbf{F} = 4x^3y^{10}z^8\mathbf{i} + 10x^4y$ A) $f(x, y, z) = x^4y^{10}z$ B) $f(x, y, z) = \frac{x^4y^{10}z}{320}$ C) $f(x, y, z) = x^4y^{10}z$ D) $f(x, y, z) = x^12y^{30}z$	the field F. $9_{2}8_{j} + 8_{x}4_{y}10_{z}7_{k}$ $8 + 10_{x}4_{y}9_{z}8 + 8_{x}4_{y}10_{z}7$ $\frac{8}{-}$ 8 + C $z^{24} + C$	+ C		245)
Use Stokes' Theorem to calculat 246) $\mathbf{F} = 3x\mathbf{i} + 2x\mathbf{j} + 7z\mathbf{k}$; C: cylinder $x^2 + y^2 = 4$	e the circulation of the fi the cap cut from the uppe	eld F around the curve C er hemisphere $x^2 + y^2 + z^2$	in the indicated direction. $r^2 = 16 (z \ge 0)$ by the	246)
Α) 2π	Β) 8π	С) 3π	D) 4π	
Evaluate. The differential is exa 247) $\int_{(0, 0, 0)}^{(3, 8, 9)} (10x + 1)e^{10}$ A) $3e^{30} + 73$	ct. x dx + z dy + y dz B) $3e^{30} + 17$	C) 3e ³⁰ + 72	D) 0	247)
Solve the problem. 248) The shape and density z-axis. Shell: "nose" of the par Density: $\delta = \frac{1}{\sqrt{\chi^2 + y^2}}$	of a thin shell are indicat aboloid $x^2 + y^2 = 2z \operatorname{cut} b$ $\overline{}$	ed below. Find the radius y the plane $z = 3$	of gyration about the	248)
A) $R_{Z} = 3$	B) $R_{Z} = \frac{1}{3}\sqrt{18}$	C) $R_Z = 144\pi$	D) $R_z = \sqrt{3}$	
Using Green's Theorem, calcula 249) The area bounded abo	te the area of the indicate ve by $y = 7$ and below by	ed region. $y = \frac{7}{81}x^2$		249)
A) 84	B) 0	C) 42	D) 168	
Calculate the area of the surface 250) S is the lower portion of A) $64\left(\frac{\sqrt{2}}{2} + 1\right)$	S. of the sphere $x^2 + y^2 + z^2$ B) $16\left(\frac{\sqrt{2}}{2} + 1\right)\pi$	$c^{2} = 64 \text{ cut by the cone } z = \sqrt{C} 64 \left(\frac{\sqrt{2}}{2} + 1\right) \pi$	$\int \frac{\sqrt{x^2 + y^2}}{D} 128 \left[\frac{\sqrt{2}}{2} + 1 \right] \pi$	250)
Evaluate the surface integral of 251) $g(x, y, z) = x^2y^2z^2$; S is and $z = \pm 1$	251)			
$A)\frac{20}{3}$	B) $\frac{4}{9}$	C) $\frac{20}{9}$	D) $\frac{40}{9}$	
Find the flux of the curl of field 252) $\mathbf{F} = \mathbf{x}^3 \mathbf{i} + 3\mathbf{x}\mathbf{j} + 6\mathbf{k}$; S is	F through the shell S. the upper hemisphere of	$x^2 + y^2 + z^2 = 100$		252)
Α) 100π	В) 300л	С) л	D) 100	·
		33		

Apply Green's Theorem to evaluate the integral.

$253) \oint_{\mathbf{C}} (3y \mathrm{d}x + 4y \mathrm{d}y)$				253)
C: The boundary of $0 \le x$	$\leq \pi$, $0 \leq y \leq \sin x$			
A) -2	B) 1	C) 0	D) 2	
Find the flux of the curl of field F the	hrough the shell S.			
254) $\mathbf{F} = (3 - y)\mathbf{i} + (1 + x)\mathbf{j} + z^2\mathbf{i}$	c ; S is the upper hemispher	the of $x^2 + y^2 + z^2 = 64$		254)
Α) 128π	Β) 2π	C) -4π	D) 256π	
Calculate the flow in the field F alo	ng the path C.			
255) $\mathbf{F} = (\mathbf{x} - \mathbf{y})\mathbf{i} - (\mathbf{x}^2 + \mathbf{y}^2)\mathbf{j}; \mathbf{C}$	is curve from (3, 0) to (-3,	0) on the upper half of the	e circle $x^2 + y^2 = 9$	255)
A) $-\frac{9}{2}\pi$	B) $\frac{9\pi - 1}{4}$	С) 9π	D) $\frac{9}{2}\pi$	
Evaluate the line integral along the	curve C.			
256) $\int_C (xz + y^2) ds$, C is the c	urve $r(t) = (-7 - 2t)i + 2tj -$	$1t\mathbf{k}$, $0 \le t \le 1$		256)
A) $-\frac{9}{2}$	B) $\frac{11}{2}$	C) $\frac{33}{2}$	D) $-\frac{3}{2}$	
Find the required quantity given th 257) Radius of gyration R _X abo	where wire that lies along the but the x-axis, where $\mathbf{r}(t) =$	curve r and has density δ (3 sin t)j + (3 cos t)k, 0 ≤ t	≤ 1; δ = 7e ^{-2t}	257)
A) $R_X = \frac{189}{2}(1 - e^{-2})$		B) R _X = -3		
C) R _x = 3		D) $R_x = \frac{189}{2}(e^{-2} - 1)$		
Test the vector field F to determine	if it is conservative.			
258) $\mathbf{F} = 6x^{6}y^{7}\mathbf{i} + \left[7x^{6}y^{6} + \frac{z^{7}}{y^{2}}\right]$	$\mathbf{j} - \frac{7\mathbf{z}^6}{\mathbf{y}} \mathbf{k}$			258)
A) Not conservative		B) Conservative		
259) $\mathbf{F} = xy\mathbf{i} + y\mathbf{j} + z\mathbf{k}$				259)
A) Not conservative		B) Conservative		
Calculate the flux of the field F across the closed plane curve C.				
260) $\mathbf{F} = e^{5\mathbf{x}}\mathbf{i} + e^{2\mathbf{y}}\mathbf{j}$; the curve (0, 0), (4, 0), and (0, 3)	C is the closed countercloc	kwise path around the tria	angle with vertices at	260)
A) $\frac{3}{20}e^{20}(1-e^{-20})+\frac{2}{3}(e^{-20})$	e ⁶ - 1) - 7	B) $\frac{3}{4}e^{20}(e^{-4}-1) + \frac{2}{3}(1+e^{-4})$	– e ⁶) – 7	
C) $\frac{3}{4}e^{20}(1 - e^{-4}) + \frac{2}{3}(e^{6})$	- 1) + 7	D) 0		

Find the flux of the vector f 261) F = 5x ² j - z ² k; S direction is outwa	ield F across the surface S is the portion of the parabord rd (away from the y-z pla	in the indicated directio olic cylinder y = 6x ² for w ne)	n. hich $0 \le z \le 4$ and $-1 \le x \le 1$;	261)	
A) -40	B) $-\frac{40}{3}$	C) 40	D) $\frac{40}{3}$		
Using Green's Theorem, fir	d the outward flux of F a	cross the closed curve C.			
262) $\mathbf{F} = (x^2 + y^2)\mathbf{i} + (x + y^2)\mathbf{i}$	 y)j ; C is the rectangle wi 	th vertices at (0, 0), (7, 0),	(7, 2), and (0, 7)	262)	
A) -14	B) 84	C) 112	D) 42		
Calculate the flux of the fie	ld F across the closed plan	ne curve C.			
263) $\mathbf{F} = y^3 \mathbf{i} + x^2 \mathbf{j}$; the c $\mathbf{r}(t) = 3 \cos t \mathbf{i} + 3 s$	263) $\mathbf{F} = y^3 \mathbf{i} + x^2 \mathbf{j}$; the curve C is the closed counterclockwise path formed from the semicircle $\mathbf{r}(t) = 3 \cos t \mathbf{i} + 3 \sin t \mathbf{j}$, $0 \le t \le \pi$, and the straight line segment from (-3, 0) to (3, 0)				
A) 12	B) – 6	C) 6	D) 0		
Evaluate the surface integra	l of a over the surface S				
264) S is the parabolic	cvlinder $y = 5x^2$, $0 \le x \le 4$	and $0 \le z \le 3$; $g(x, y, z) = 3$	x	264)	
A) $\frac{3}{1601}$	<u>01</u> + 1)	B) $\frac{9}{1601\sqrt{16}}$	<u>501</u> – 1)		
100(1001) 10		100(1001)10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
C) $\frac{3}{100} (1601\sqrt{16})$		D) $\frac{9}{100} (1601 \sqrt{16})$	$\overline{501} + 1$)		
Find the flux of the curl of t	ield F through the shell S				
265) $\mathbf{F} = (4y + 4)\mathbf{i} - 3x\mathbf{j}$	+ $(e^{Z} - 1)k$; S: $r(r, \theta) = 3 \sin^{2} \theta$	n φ cos θ i + 3 sin φ sin θ j +	$3 \cos \phi \mathbf{k}, 0 \le \theta \le 2\pi \text{ and } 0 \le \theta$	¢ ≤ 265)	
$\frac{\pi}{2}$					
А) 63π	B) -63π	С) -126π	D) 126		
Find the surface area of the	surface S.				
266) S is the portion of plane	the paraboloid $z = 4 - x^2$	- y ² that lies above the rin	$g 4 \le x^2 + y^2 \le 9$ in the x-y	266)	
A) $\frac{\pi}{2}[37\sqrt{37} - 17]$	7√17]	B) $\frac{\pi}{4}$ [37 $\sqrt{37}$ - 12	7√17]		
C) $\frac{\pi}{3}[37\sqrt{37} - 17]$	√√17]	D) $\frac{\pi}{6}[37\sqrt{37} - 12]$	7\[\]17]		
Evaluate the line integral al	ong the curve C.				
267) $\int_{C} \frac{x+y+z}{5} ds$,	C is the curve $\mathbf{r}(t) = 3t\mathbf{i} + (t)$	$(8\cos\frac{1}{2}t)\mathbf{j} + (8\sin\frac{1}{2}t)\mathbf{k}, 0$	$\leq t \leq 2\pi$	267)	
A) $6\pi^2 + 64$	Β) 6π	C) 6 + 32	D) $6\pi^2 + 32$		
Test the vector field F to de 268) $\mathbf{F} = 3x^2y^3z^3\mathbf{i} + 3x$	termine if it is conservativ ${}^{3}v^{2}z^{3}i + 3x^{3}v^{3}z^{2}k$	ve.		268)	
A) Not conserva	tive	B) Conservative		·	
		25			

Line C	roop's Theorem find the o	utward flux of Facross th	a closed currie C		
269) $\mathbf{F} = (x - e^{\mathbf{x}} \cos y)\mathbf{i} + (x + e^{\mathbf{x}} \sin y)\mathbf{j}$; <i>C</i> is the lobe of the lemniscate $r^2 = \sin 2\theta$ that lies in the first account					269)
	A) 0	B) 1	C) $\frac{1}{2}$	D) $\frac{1}{4}$	
Calculate the work done by the force F along the path C.					
270	$\mathbf{F} = -9x\mathbf{i} - 5x^3y^2\mathbf{j} + (-9z - y^2)\mathbf{j} + (-9z - y^2)\mathbf{j}$	$(4y^2)\mathbf{k}$; the path is $C_1 \cup C_2$	\cup C ₃ where C ₁ is the strain	ight line from (0, 0, 0)	270)
	to $(1, 0, 0)$, C ₂ is the straig $(1, 1, 1)$	int line from (1, 0, 0) to (1,	1, 0), and C3 is the straigh	t line from $(1, 1, 0)$ to	
	A) W = $-\frac{44}{3}$	B) W = $-\frac{37}{6}$	C) W = $-\frac{41}{3}$	D) W = $-\frac{9}{2}$	
Solve th	e problem.				
271) The shape and density of a thin shell are indicated below. Find the moment of inertia about the z-axis					271)
	Shell: "nose" of the parabo	bloid $x^2 + y^2 = 2z$ cut by the	e plane z = 1		
	Density: $\delta = \frac{1}{\sqrt{x^2 + y^2 + 1}}$				
	A) $I_Z = \frac{2}{3}\pi$	B) $I_Z = 16\pi$	C) $I_Z = \frac{8}{3}\pi$	D) $I_Z = 2\pi$	
Calculat	e the flux of the field F acr	oss the closed plane curve	с.		
272) $\mathbf{F} = (x+y)\mathbf{i} + xy\mathbf{j}$; the curve at (0, 0), (7, 0), (7, 6), and (C is the closed counterclo	ckwise path around the re	ectangle with vertices	272)
	A) - 69	B) 189	C) 336	D) 225	
Evaluate the line integral of $f(x,y)$ along the curve C. 273) $f(x,y) = 8y^2$, C: $y = e^{-x}$, $0 \le x \le 1$					273)
A) $\frac{8}{3}[2\sqrt{2} - (1)^{3/2}]$ B) $4[2\sqrt{2} - (e^{-2} + 1)^{3/2}]$				·	
	C) $\frac{8}{3} [(1)^{3/2} - 2\sqrt{2}]$		D) $\frac{8}{3}[2\sqrt{2} - (e^{-2} + 1)^{3/2}]$	²]	
Find the required quantity given the wire that lies along the curve r and has density δ .					274)
	A) I _V = - 3775	B) I _y = - 755	C) I _y = 755	D) I _V = 3775	
	,		-	·	

Solve the problem.

275) The radial flow field of an incompressible flui	d is shown below. For which of the closed paths is	s the 275)
circulation not necessarily zero?		
 B	\mathbf{A}	
$\Delta \rightarrow \uparrow \uparrow$	C	
	\overrightarrow{T}	
	×	
₩		
C) Path C only	D) None of the above	
276) The shape and density of a thin shell are indic z-axis.	ated below. Find the radius of gyration about the	276)
Shell: upper hemisphere of $x^2 + y^2 + z^2 = 9$ cu Density: $\delta = 1$	tt by the plane $z = 0$	
A) $R_Z = \sqrt{6\pi}$ B) $R_Z = \sqrt{6}$	C) $R_Z = 27\pi$ D) $R_Z = 2\sqrt{3}$	
Evaluate the work done between point 1 and point 2 fo	or the conservative field F.	
277) $\mathbf{F} = (\mathbf{y} + \mathbf{z})\mathbf{i} + \mathbf{x}\mathbf{j} + \mathbf{x}\mathbf{k}; P_1(0, 0, 0), P_2(4, 10, 8)$		277)
A) $W = 40$ B) $W = 72$	C) $W = 0$ D) $W = 8$	
Test the vector field F to determine if it is conservative.		
278) $\mathbf{F} = -\csc^2 \mathbf{x} \csc \mathbf{y}\mathbf{i} - \cot \mathbf{x} \cot \mathbf{y} \csc \mathbf{y}\mathbf{j} - \cos \mathbf{x}\mathbf{k}$	D) Mat and the	278)
A) Conservative	b) not conservative	
$x = y$ $2\sqrt{y^2 + y^2}$		
279) $\mathbf{F} = \frac{1}{z^2 \sqrt{x^2 + y^2}} \mathbf{i} + \frac{1}{z^2 \sqrt{x^2 + y^2}} \mathbf{j} - \frac{1}{z^3} \mathbf{j}$	k	279)
A) $f(x, y, z) = \frac{x + y}{z^2 \sqrt{x^2 + y^2}} + C$	B) $f(x, y, z) = \sqrt{x^2 + y^2} + \ln z + C$	
C) $f(x, y, z) = \frac{1}{z^2 \sqrt{x^2 + y^2}} + C$	D) $f(x, y, z) = \frac{\sqrt{x^2 + y^2}}{z^2} + C$	
	37	

Solve the problem.					
280) The shape and density	280) The shape and density of a thin shell are indicated below. Find the coordinates of the center of				
mass.					
Shell: cone $x^2 + y^2 - z^2$	$^{2} = 0$ between $z = 2$ and $z =$	5			
Density: constant					
A) $\left[0, 0, \frac{242}{\pi}\right]$	B) $\left[0, 0, \frac{242}{242}\right]$	C) $\left[0, 0, \frac{26}{\pi}\right]$	D) $\left[0, 0, \frac{26}{26}\right]$		
(3, 3, 71)	-, (, , , , 71)	-, (*, *, 7	-, (, , , 7)		
Calculate the flux of the field F	across the closed plane cur	ve C.			
281) F = y i - x j ; the curve C	is the circle $(x + 9)^2 + (y + 4)^2$	$(4)^2 = 81$		281)	
A) 0	B) -324	C) 162	D) -162		
Evaluate the line integral along	the curve C.				
c (12 + 12)					
282) $\int_{C} \left(\frac{x^{2} + y^{2}}{z^{2}} \right) ds, C \text{ is the curve } \mathbf{r}(t) = (-1 - t)\mathbf{i} - \mathbf{j} + (-1 - t)\mathbf{k}, \ 0 \le t \le 1$					
	n) ³	C) 3	$D) \frac{1}{5}$		
A) 5	$\frac{D}{2}\sqrt{2}$	$C)\frac{1}{2}$	$D) = \frac{1}{2}\sqrt{2}$		
Evaluate the surface integral of t	the function g over the sur	face S.			
283) $g(x, y, z) = x^3y^3z^3$; S is	the surface of the rectangu	lar prism formed from the	coordinate planes and	283)	
the planes $x = 3$, $y = 3$,	and $z = 2$	*	*		
A) 15309	B) 30618	$(7)\frac{729}{729}$	D) 2187		
2	D) 50010	2	D) 2107		
Using Green's Theorem, comput	te the counterclockwise cir	culation of F around the c	losed curve C.		
284) $\mathbf{F} = (x - y)\mathbf{i} + (x + y)\mathbf{j}$; C	is the triangle with vertice	s at (0, 0), (7, 0), and (0, 5)		284)	
A) 70	B) 35	C) 175	D) 0		
Calculate the flux of the field F across the closed plane curve C.					
285) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$; the curve C is the circle $(x + 3)^2 + (y + 4)^2 = 4$				285)	
A) 0	B) 8π – 6	C) 8π	D) 2π		
Calculate the flow in the field F along the path C.					
286) F = $\nabla(xy^3z^3)$; C is the l	ine segment from (7, 1, 1) to	o (8, 1, - 1)		286)	
A) 27	B) -10	C) 16	D) –15		
Calculate the area of the surface	S.				
287) S is the portion of the cone $\frac{x^2}{9} + \frac{y^2}{9} = \frac{z^2}{16}$ that lies between $z = 1$ and $z = 3$				287)	
A) ¹⁵	B) 75	c) ²²⁵	D) 75		
$\frac{A}{2}n$	b) <u>8</u> ⁿ	<u>c</u>) <u>2</u> ⁿ	D) <u>8</u>		

I density of a thin shell are in of the sphere $x^2 + y^2 + z^2 = 1$ ant B) $\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)$, compute the counterclockw \overline{z} , C is the region defined I B) $\frac{7}{12}$ ity given the wire that lies a ertia I _Z about the z-axis, whe $\left(\frac{\pi}{5}\right)$ B) I _Z = $625\left(\frac{\pi+5}{5}\right)$, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: $y = x, 0 \le x \le \frac{\pi}{3}$	Accelerated below. Find the coordinate below. Find the coordinate in the first octant $C)\left(\frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right)$ wise circulation of F around by the polar coordinate inequality of the curve r and has derived rere $r(t) = (5 \cos t)\mathbf{i} + (5 \sin t)\mathbf{j}$, $rectarred to the curve r and has derived by the curved by the $	the closed curve C. alities $1 \le r \le 2$ and $0 \le \theta$ $D) - \frac{7}{12}$ $0 \le t \le \frac{\pi}{5}; \delta = 5(1 + \sin 5t)$ $D) I_Z = 0$ D) 0	288) ¹ ≤ π 289) 290) 291)	295) ∮ _C C: ≁ A) B) C) D)
of the sphere $x^2 + y^2 + z^2 = 1$ ant b) B) $\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)$ compute the counterclocky B) $\frac{7}{12}$ ity given the wire that lies a ertia I _z about the z-axis, whe $\left(\frac{\pi}{5}\right)$ B) I _z = $625\left(\frac{\pi + \pi}{5}\right)$ c, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: y = x, 0 s x < $\frac{\pi}{3}$	00 that lies in the first octant $C)\left(\frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right)$ wise circulation of F around by the polar coordinate inequal C) 0 long the curve r and has der re $r(t) = (5 \cos t)i + (5 \sin t)j, c$ $\frac{2}{2}$ C) $I_Z = 25\left(\frac{\pi + 2}{5}\right)$ across the closed curve C. at (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	the closed curve C. nalities $1 \le r \le 2$ and $0 \le \theta$ D) $-\frac{7}{12}$ nsity δ . D) $I_Z = 0$ D) $I_Z = 0$	l ≤ π 289) 290) 291)	295) 9 C: 4 A) B) C) D)
B) $\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)$ compute the counterclocky B) $\left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right)$ compute the counterclocky B) $\frac{7}{12}$ ity given the wire that lies a critia I _z about the z-axis, whe $\left(\frac{\pi}{5}\right)$ B) I _z = $625\left(\frac{\pi+3}{5}\right)$ c, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C; y = x, 0 s y < $\frac{\pi}{3}$	$C)\left(\frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right)$ vise circulation of F around by the polar coordinate inequal C) 0 long the curve r and has der re $r(t) = (5 \cos t)i + (5 \sin t)j, 0$ $\frac{2}{2}$ C) $I_Z = 25\left(\frac{\pi + 2}{5}\right)$ across the closed curve C. ti (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	D) $(5, 5, 5)$ the closed curve C. nalities $1 \le r \le 2$ and $0 \le \theta$ D) $-\frac{7}{12}$ nsity δ . D) $4 \le \frac{\pi}{5}$; $\delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	290) 291)	C: 4 A) B) C) D)
, compute the counterclocky B) $\frac{7}{12}$ ity given the wire that lies a ertia I _Z about the z-axis, whe $\frac{\pi}{5}$ B) I _Z = $625\left(\frac{\pi+3}{5}\right)$, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: y = x, $0 \le x \le \frac{\pi}{3}$	vise circulation of F around by the polar coordinate inequal C) 0 long the curve r and has den re $r(t) = (5 \cos t)i + (5 \sin t)j, c$ $\frac{2}{2}$ C) $I_Z = 25\left(\frac{\pi + 2}{5}\right)$ across the closed curve C. t(0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	the closed curve C. nalities $1 \le r \le 2$ and $0 \le \theta$ D) $-\frac{7}{12}$ nsity δ . $0 \le t \le \frac{\pi}{5}; \delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	 289) 290) 291) 	C) D)
B) $\frac{7}{12}$ ity given the wire that lies a ertia I _z about the z-axis, whe $\left(\frac{\pi}{5}\right)$ B) I _z = 625 $\left(\frac{\pi + \pi}{5}\right)$ <i>i</i> find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ all of f(x,y) along the curve C + sin y C: y = x 0 s x < $\frac{\pi}{3}$	by the polar coordinate inequal C) 0 long the curve r and has der re $\mathbf{r}(t) = (5 \cos t)\mathbf{i} + (5 \sin t)\mathbf{j}$, C) $I_Z = 25 \left(\frac{\pi + 2}{5}\right)$ across the closed curve C. ti (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	nalities $1 \le r \le 2$ and $0 \le \theta$ D) $-\frac{7}{12}$ nsity δ . $0 \le t \le \frac{\pi}{5}$; $\delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	$0 \le \pi$ 289)	D)
B) $\frac{7}{12}$ ity given the wire that lies a ertia I_z about the z-axis, whe $\left(\frac{\pi}{5}\right)$ B) $I_z = 625\left(\frac{\pi+5}{5}\right)$, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: $y = x_1 0 e_x < \frac{\pi}{3}$	C) 0 long the curve r and has der re r(t) = (5 cos t)i + (5 sin t)j, ($\frac{2}{2}$) C) $I_z = 25\left(\frac{\pi + 2}{5}\right)$ across the closed curve C. tt (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	D) $-\frac{7}{12}$ nsity 8. $0 \le t \le \frac{\pi}{5}; \delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	290) 291)	
ity given the wire that lies a ertia I _Z about the z-axis, when $\left(\frac{\pi}{5}\right)$ B) I _Z = $625\left(\frac{\pi+5}{5}\right)$, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ all of f(x,y) along the curve C + sin y, C: y = x, 0 < x < $\frac{\pi}{3}$	long the curve r and has der re r(t) = $(5 \cos t)\mathbf{i} + (5 \sin t)\mathbf{j}$, $\frac{2}{2}$ C) $I_Z = 25\left(\frac{\pi + 2}{5}\right)$ across the closed curve C. ti (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	histy δ . $0 \le t \le \frac{\pi}{5}; \delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	290) 291)	
B) $I_Z = 625 \left(\frac{\pi + 5}{5}\right)$ F) $I_Z = 625 \left(\frac{\pi + 5}{5}\right)$	re r(t) = (5 cos t)i + (5 sin t)j, $\frac{2}{2} \qquad C) I_{Z} = 25 \left(\frac{\pi + 2}{5}\right)$ across the closed curve C. t (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	$0 \le t \le \frac{\pi}{5}; \delta = 5(1 + \sin 5t)$ D) $I_Z = 0$ D) 0	290)	
$I_{Z} = 625 \left(\frac{\pi + 5}{5}\right)$ B) $I_{Z} = 625 \left(\frac{\pi + 5}{5}\right)$ is the triangle with vertices a B) $\frac{650}{3}$ all of f(x,y) along the curve C $I + \sin y$, C: $y = x$, $0 \le x \le \frac{\pi}{3}$	$\frac{2}{2} \qquad C) I_{Z} = 25 \left(\frac{\pi + 2}{5} \right)$ across the closed curve C. at (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	D) I _Z = 0 D) 0	291)	
, find the outward flux of F is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y, C: y = x, $0 \le x \le \frac{\pi}{3}$	across the closed curve C. it (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	D) 0	291)	
is the triangle with vertices a B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: y = x $0 \le x \le \frac{\pi}{3}$	t (0, 0), (10, 0), and (0, 10) C) $\frac{500}{3}$	D) 0	291)	
B) $\frac{650}{3}$ al of f(x,y) along the curve C + sin y C: y = x $0 \le x \le \frac{\pi}{3}$	C) $\frac{500}{3}$	D) 0		
al of f(x,y) along the curve C + sin y C: $y = x 0 \le x \le \frac{\pi}{2}$				
$+\sin y C$: $y = x 0 \le x \le \frac{\pi}{2}$				
2			292)	
B) 0	C) $\sqrt{2}$	D) 2√2		
the surface S.				
$e\frac{5}{2}x^2 + 5z = 0$ that lies above	the region bounded by the >	x -axis, $x = \sqrt{64 - 1}$, and y	y = 293)	
-11	-11	-11		
B) $\frac{511}{2}$	C) $\frac{511}{6}$	D) $\frac{511}{3}$		
heorem, find the outward fl	ux of F across the boundary	of the region D.		
$\mathbf{i} + y\sqrt{x^2 + y^2}\mathbf{j} + z\sqrt{x^2 + y^2}\mathbf{k}$; D: the thick cylinder $2 \le x^2$	$+y^2 \le 6$, $2 \le z \le 5$	294)	
	, ,	D) 2220-		
	the surface S. $e^{\frac{5}{2}x^2 + 5z} = 0$ that lies above B) $\frac{511}{2}$ Theorem, find the outward fl $e^{\frac{1}{2}} + r\sqrt{x^2 + v^2} i + z\sqrt{x^2 + v^2} k$	the surface S. $e^{\frac{5}{2}x^2 + 5z} = 0$ that lies above the region bounded by the y B) $\frac{511}{2}$ C) $\frac{511}{6}$ Theorem, find the outward flux of F across the boundary $e^{\frac{5}{2}x^2 + y^2}$ i + $y\sqrt{x^2 + y^2}$ k; D: the thick cylinder $2 \le x^2$	the surface S. the surface S. the $\frac{5}{2}x^2 + 5z = 0$ that lies above the region bounded by the x-axis, $x = \sqrt{64 - 1}$, and y B) $\frac{511}{2}$ C) $\frac{511}{6}$ D) $\frac{511}{3}$ Theorem, find the outward flux of F across the boundary of the region D. $\mathbf{E}_{\mathbf{i}} + y\sqrt{x^2 + y^2}\mathbf{j} + z\sqrt{x^2 + y^2}\mathbf{k}$; D: the thick cylinder $2 \le x^2 + y^2 \le 6$, $2 \le z \le 5$	the surface S. the surface S. the $\frac{5}{2}x^2 + 5z = 0$ that lies above the region bounded by the x-axis, $x = \sqrt{64 - 1}$, and $y = -293$) B) $\frac{511}{2}$ C) $\frac{511}{6}$ D) $\frac{511}{3}$ Theorem, find the outward flux of F across the boundary of the region D.

een's Theorem to evaluate the integral.

(95)
$$\oint_C (9x + y^3) \, dx + (3xy^2 + 5y) \, dy$$

C: Any simple closed curve in the plane for which Green's Theorem holds

A) There is not enough information to evaluate the integral. [Lock in choice D]

40

B) 2 C) -2

295)

Answer Key Testname: TEST 7

> 2) B 3) C 4) D 5) C 6) D 7) B 8) D

1) B

9) Answers will vary. One possibility: $\mathbf{r}(\mathbf{y}, \theta) = \mathbf{y}^2 \mathbf{i} + \mathbf{y} \cos \theta \mathbf{j} + \mathbf{y} \sin \theta \mathbf{k}, -\infty < \mathbf{y} < \infty, 0 \le \theta < 2\pi; \mathbf{x} - 6z = -9$ 10) Answers will vary.

- 11) Answers will vary. One possibility is $\mathbf{r}(\theta, \phi) = 4 \cos \theta \sin \phi \mathbf{i} + 11 \sin \theta \sin \phi \mathbf{j} + 9 \cos \phi \mathbf{k}, 0 \le \theta < 2\pi, 0 \le \phi < \pi$ 12) Answers will vary.
- 13) Answers will vary. One possibility is 4x y = 2
- 14) The integral is 3 times the area enclosed by C.
- 15) Answers will vary. One possibility is $\mathbf{r} = 6 \cos \theta \mathbf{i} + 6 \sin \theta \mathbf{j} + z \mathbf{k}$, $4 \le z \le 6$, $0 \le \theta \le 2\pi$
- 16) Answers will vary.
- 17) The paddlewheel axis points along the vector $\mathbf{r} = -4\mathbf{i} 3\mathbf{k}$.
- 18) Answers will vary. Notice that M and N are not defined at (0,0), which is contained inside the region R.
- 19) Work is proportional to the arc length s of the path.

20) y = 6

- 21) Work is identically zero.
- 22) b = 48 and c = -24
- 23) Answers will vary.
- 24) It passes the component test for exactness so the path taken does not matter
- 25) No, the region containing C may not be simply connected, in which case Stokes' Theorem does not apply. 26) Answers will vary.
- 27) The flux is independent of the radius. Flux is equal to 4π .
- 28) Answers will vary. One possibility is $\mathbf{r} = \mathbf{r} \cos \theta \mathbf{i} + \mathbf{r} \sin \theta \mathbf{j} + \frac{3}{4} \mathbf{r} \mathbf{k}$, $4 \le \mathbf{r} \le \frac{16}{3}$, $0 \le \theta \le 2\pi$

29) Answers will vary. One possibility is $\mathbf{r} = 10 \cos \phi \sin \theta \mathbf{i} + 10 \sin \phi \sin \theta \mathbf{j} + 10 \cos \theta \mathbf{k}, 0 \le \phi \le 2\pi, \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$

- 30) Answers will vary. One possibility is $8\sqrt{2}x + 8\sqrt{2}y z = 16$
- 31) Answers will vary. Note that $\mathbf{n} = \frac{\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{V}}}{|\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{V}}|}$ and $d\sigma = |\mathbf{r}_{\mathbf{u}} \times \mathbf{r}_{\mathbf{V}}|$ dudv. The assertion follows.
- 32) Answers will vary.
- 33) Answers will vary. One possibility is $\mathbf{r} = r\cos\theta \mathbf{i} + r\sin\theta \mathbf{j} + 2r^2 \mathbf{k}$, $\frac{\sqrt{10}}{2} \le \mathbf{r} \le \frac{\sqrt{14}}{2}$, $0 \le \theta \le 2\pi$

34) Answers will vary. One possibility is $3\sqrt{2}x - 3\sqrt{2}y + 2z = 0$

35) Answers will vary. One possibility is $x + \sqrt{3}y + 2z = 14\sqrt{2}$

Answer Key Testname: TEST 7

65) B

36) Let C be a closed curve for which Green's Theorem applies. Then

A new or Kow	A neuron Vou
Answer Rey	Allswei Key
Testname: TEST 7	Testname: TEST 7
restitance. rES17	restraine. restraine.
66) D	116) D
67) B	117) C
68) B	119) B
	110) D
69) C	119) C
	100) B
70) D	120) B
71) A	121) D
72) C	122) A
73) B	123) D
	125) D
74) B	124) A
75) B	125) C
	125) C
76) B	126) B
77) C	127) D
	127) D
78) D	128) C
79) D	129) A
80) C	130) B
81) C	131) B
82) D	132) A
	102) 11
83) B	133) A
84) A	124) P
04) A	134) D
85) A	135) C
86) A	136) A
87) A	137) A
88) C	138) B
89) D	139) A
90) B	140) D
91) A	141) A
	141) A
92) C	142) C
(2) P	142) A
93) D	145) A
94) A	144) D
05) B	145) D
95) B	145) B
96) A	146) C
	145)
97) A	147) C
98) C	148) B
	140 C
177) A	147) し
100) A	150) A
	151) 0
101) A	151) C
102) C	152) D
	150
103) A	153) A
104) B	154) D
105) A	155) B
106) D	156) B
107) B	157) C
108) Δ	158) B
109) D	159) D
110) A	160) D
110) A	100J D
111) A	161) A
110.0	1(2)
112) C	162) D
113) A	163) B
114) C	164) D
115) C	165) C
43	44

Answer Key Testname: TEST 7	Answer Key Testname: TEST 7
160 D 167 A 168 C 170 B 171 A 173 B 174 C 175 B 177 C 178 C 179 C 180 D 181 C 185 A 186 C 187 C 188 D 190 A 192 C 193 B 194 D 195 A 196 B 197 B 198 B 199 D	216) D 217) D 218) D 220) C 221) C 222) B 223) B 223) B 225) A 226) C 227) B 228) B 229) C 230) C 231) B 232) A 233) A 234) C 235) A 236) C 237) C 238) B 239) A 238) B 239) A 240) C 241) C 242) C 243) C 244) C 243) C 244) C 243) C 244) C 243) C 244) C 243) C 244) C 243) C 244) C 245) C 246) B 249) A 250) D 251) D 251) D 251) D 251) D 251) D 252) B 253) D 254) A 255) D 256) C 257) C 258) B 259) A 259) A 250) D 251) D 251) D 251) D 252) D 253) D 254) A 253) D 254) A 259) A 259) A 250) D 250) D 251) D 250 D 250 C 257) C 258) B 259) A 250) D 250 D 250 C 257) C 258) B 259) A 250 D 250 D 250 C 257) C 258) B 259) A 250 D 250 A 250 D 250

Answer Kev		
Testname: TFST 7		
restrance. TEST /		
266) D		
267) D		
268) B		
269) C		
270) A		
271) D		
272) D		
273) D		
274) C 275) C		
275) C		
270) B		
277) B 278) B		
278) D		
280) D		
281) A		
282) B		
283) A		
284) B		
285) C		
286) D		
287) A		
288) D		
289) D		
290) B		
291) C		
292) D		
293) D		
294) C		
295) D		