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2018-19 MATH216 Mathematics IV — Solutions to Exercise Sheet 3 N. Course

Solutions to Exercise Sheet 1 are now on my website.

In the exams, you will typically not be told if an equation is linear, separable, exact, homogeneous, etc — you should be able
to determine this yourself. You can use Exercises 15 and 16 to practise.

Exercise 15 (First Order ODEs). Find the general solutions of the following ODEs:

(a) 9yy + 4z = 0. () ev(y—2)E +y(l+ev)=0.

(b) ¥+ (z+1)y> =0. (k) (22 + 3y)dz + (3z + 2y)dy = 0.

(c) G =3tx+1). (1) (2 + £)dz + (y* + Inz)dy = 0.

(((3 le ;—ncz(; y::m S(.)S o (m) (e®siny + tany)dz + (e* cosy + x sec? y)dy = 0.
() o = (y — 1) cota (n) ydz + (22 — ye¥)dy = 0.

(&) 4+ () y = e o) /by =y

(h) (322 + y2)dz — 2zydy = 0. () v =y(=y® - 1).

(i) ¢ = % +tan (3). (a) (1+a2)y = 2ay(y* - 1).

Solution 15. Thanks to Prof. Eldem for these solutions.

(a) This is a separable equation. Thus, we have

Jydy = —4:cdm:>/9ydy:—/4xdaz+(7:>

9 2 4 2 C
§y2 —2w2+C:>y:iw/§C—§w2:i§\/01—w2. (01:5>.

(b) This equation can be written as follows.

d d
%’ 7(a:+1)da::>/%:*/(1+1)dw+cz>
) Y

1 z?2 1
L= C—=y=ty 55—
292 g Tt Y 2% + 2z + 2C

(c) This separable equation can be written as follows.

e _ 3tdt=/ da —/3tdt+C=>
(x+1) - (x+1) -
3 3,2
m@+] = SE+C=a) =0’ 1 (Cr=e).

(d) This separable equation can be solved as follows.

d 1
- —— :>7sinydy:dz:>7/sinydy:/dx+C:>
dz siny

cosy = x4+ C = y=arccos(z+C).

(e) This is a separable equation. Therefore, we get

dx " cos 2t 1 .
— = cot2tdt:>lnac:/ - dt+C = = In(sin2t) + C =
x sin 2¢ 2

z = C1Vsin2t. (Cl = ec) .

(f) Note that this is a separable equation which can be written as follows.

dy C o dy i
—_— = cotxdx:>/7:/cotacdac+C:>
y—1 y—1
Inly—1) = In(sinz)4+C =y =1+ Cisinz. (C1 :ec)‘
(g) The integrating factor is
2241 4o v
(B ) de _ 2
Consequently, we get
d . 2
— (y:te%) = ze®Pe T =g — y:te2m = [xdx = zr +C =
dz 2
2
T o, C _op x C\ _op z° 4+ Cq
- el (24 = = . (ChL=20).
Y 2¢ +z€ <2+x)e 2xe?® (€1 )
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(h) Let M(zx,y) = 3z2 4+ y? and N(z,y) = 2zy. Then, we have
oM 9y — ON
oy ~ 7T oz’
which implies that the equation is exact. Thus, it follows that

Fla) = [@e +y*) do + g(u) = + 20 + g(0).

Taking the derivative with respect to y, we obtain

OF
oy = 2ey +9'(y) = N(z,y) = 20y = ¢'(y) =0 =
g(y) = C=Flz,y)=2"+ay°=C1, (C1=-C).
(i) This is a homogeneous equation and we let v = y/x = y = vz. Then, we get
dy dv dv dv tan(v) dv dx
— = v4+zr— = v+zr— =v+tan(v) = — = :>/ :/—+C:>
dx dx dx dx T J tan(v) J =z
In(sinv) = Inz+ C = sinv =Ciz = v = arcsin (C1z) = y = x arcsin (C1z), (C’l :ec).
(j) Solution 1: Let v = z/y => y = x/v. This implies that
dy 1 z dv 1 z dv (14"
de v v2dzx v v2dz  ev(1—w)
dv v? [ (14 ¢eY) 1 v2(1+e¥) v
- = (= L) =— "7 — | =
dx x (e”(l—v)+v> xe”(l—v)+x
e’ (1 —w) dx dv  1+4e" dx
—_—dv = — = — — dv = — —
v(v 4+ ev) T v v+ ev T
d 1 v d
/71)7/ te dv = /—w+C:>1n< i >:1nz+C:>
v v+ ev x v+ ev
' - Ciz= _ -0, (clzec):>
v+ e? m—&-ye?
w+ye% = Cs.

Solution 2:

ey (yfm)g—z +y(l+ev)=0= ey(yfz)er(lJrey)i—: = 0. Then we use the substitution v = z/y = = = vy and g—z = v+yg—Z.Then, we get

d
'y =) +y(+eNwryg) = 0
"1 —=v)+v(1l+e")]dy+ (1+e")ydv = 0
(e +v)dy = —(1+¢e")ydv
dy (1+e”)
— = ———=dv
Yy eV + v
d 1 v
CA wdv_i_c
Yy . e 4+ v
Iny = —In(e’"+v)+C
ye' +v) = C1,(C1=e)
ye% +z = C1
(k) Let M(z,y) =2z + 3y and N(z,y) = 3z + 2y. Then, we have
OM _, _ON
oy ~ 7 oz’

which implies that the equation is exact. Thus, it follows that
Fla.y) = [ (204 3y)do + g(u) = 2 + 3oy + 9(0).

Taking the derivative with respect to y, we obtain

oF
W - 3¢ +¢'(y) = N(z,y) =82+ 2y = ¢'(y) = 2y =
9@) = Y +C= F(z,y)=a"+3zy+y°=C1, (C1=-0).

(1) Let M(z,y) = (z® + %) and N(=z,y) = (y* + Inz). Then, we have
oM 1 ON
Py "z oa
which implies that the equation is exact. Thus, it follows that

4
Faw) = @+ Y)do+ ) = % +yine+ o).

Taking the derivative with respect to y, we obtain

oOF
By = metd@=NEy)= v+l =g'(y) =y’ =
y3 a:4 y3
gly) = EJrCﬁF(:v,y):IqulnrJr?:Cl, (C1=-0).
(m) Let M(z,y) = (e® siny + tany) and N(z,y) = (e® cosy + zsec? y). Then, we have

oM . + sec? ON

— = ¢e” cos sec”y = —,

oy Y Y ox

which implies that the equation is exact. Thus, it follows that
F(z,y) = /(em siny + tany) dz + g(y) = e® siny + z tany + g(y).

Taking the derivative with respect to y, we obtain

OF .

oy e” cosy + zsec’ y+ g’ (y) = N(z,y) = e” cosy + zsec’ y = ¢'(y) = 0 =
Y

g(y) = C = F(z,y)=¢€"siny+axtany=Cy, (C;1=-C).
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(n) Let M(z,y) =y and N(z,y) = (2 — ye¥). Then, we have

oM ON 9
oy ox
Then, we check
oM _ N
y oc _ —1
M Yy

Consequently, y is an integrating factor. Thus, we get
Mi(z,y) =y° and Ni(z,y) = (2zy — y’e’)
which implies that M (z,y)dz + N1(x,y)dy = 0 is exact. Thus, it follows that

F(z,y) = /y2 dz + g(y) = v’z + g(y).

Taking the derivative with respect to y, we obtain

OF
oy = vt =Ny = ey - yle’) = g'(y) = —y’e’ =
o) = —y'e’ +2e’ 20" + C = F(z,y) =v’z — (v’ ~ 2 +2) = C1, (C1=-0).
(o) This equation can be written as follows.
’ 1 1 -2
y+-oy=-—y .
T T
Hence, we have a Bernoulli equation with n = —2. Let v = y3 = = 3y2y" Thus, we have
1 1 _ v
3%y +3y°—y =3y —y P = +3— =
x T T
The integrating factor is 2° and we get
d C «® 4+ C)'/®
—(J;Sv) :37;2:>a;3vzw3+C:>v:1+—:>y—¥.
dz 3 x
(p) This equation can be written as follows.
v +y=ay’.
Hence, we have a Bernoulli equation with n = 4. Let v = y_3 = v = 73y_4y'. Thus, we have
—3y74y/ — 3y74y =3z = v —3v=—3x.
The integrating factor is e 3% and we get
d [ _s s . a1 ol 3Ce®® + 3z +1
—(631)) = —3163:>e?’v:we3+763+c’:>v:#
dx 3 3
= = (s tmer)
Y= \5Ce% v3z+1) -
(q) This equation can be written as follows.
m 2zy 2a:y4
YT a+e2) T (T+a2)
Hence, we have a Bernoulli equation with n = 4. Let v = y =2 = v’ = —3y~*y/. Thus, s solutions. we have
6xy =3 6x 6x 6x
—4 7 Y ’
-3 — = - v — v=— .
YU T 0 T (1t (1+a2) (1+a2)

The integrating factor is (1 + x2)~2 and we get

% ((1 + xz)fgv)

—6z(1+23) ' = (14+2)Pv=0+2)"+C=v=1+C01+2%>

1

1 )§
1+ C(1+22)3 ’

— v

Exercise 16 (Initial Value Problems). Solve the following IVPs:

dy _

(a) Zy/'@) f’e*y © Z?O)_:(%J;)Oew —1 0 ;a(cg;r:l:)))yd:r + (2y—)dy = 0
o s Y UR S ORI

(c) Z(g) y:“;t ! @ ;ﬂgg) Z)CZ + (32 +y)dy =0

O ot w {25

Solution 16.

(a) This equation can be written as follows.

dy 3
— = e

dz

Since y(2) = 0, we get

Thanks to Prof. Eldem for these solutions.

4 4
_y:>eydy:a:3d93:>ey:%+C:>y:ln<%+c’>.

4

2 4
O:y(2):1n<I+C>:>C:73:>y:1n<%73)

www.neilcourse.co.uk/math216.html



(b)

()

(d)

(e)

()

(8)

This equation can be written as follows.

5 1
dy _ 4dx(y” +1)2

Y

dx Yy

Since y(0) = 1, we get

2 +1)3

1=y(0)=y=4/(20)2+0)>’-1=C=V2=y= (2z2+\@)2—1

This equation can be expressed as follows.

dy dy

™

dx
Since y(%) = 2, we get 2 = y(5

This equation can be expressed as follows.

Z)=Cisin(5) = C1 =2 = y = 2sinz.

— =ycotz = — =cotzdr = Iny =In(sinz) + C = y = Cy sinz,
Yy

d 3, d P d ; .
Yoy = 20+43= e 43ye® = (224 3) ¥ — — (yesm) = (2z + 3) *" = ye*”
dz dz dz
2 2 2 7
ye3z = ZgedT_Z /631 dxr + &3 +C —= ye3z = Zged® + el +C —=
3 3 3 9
1 p
y = 6(6x+7)+0673”.

Since y(0) = 1, we get 1 = y(0) = 3 (6(0) +7) + Ce™*O = C =2/9 = y = § (62 + 273" + 7).

Let x +y = v = y = v — . Then, we get

dy
dzx

ve” —/ev dv =

Since y(0) = 0 = C = —1. Thus, we get

Dividing both sides by z2, we get <4 —2 (%)2> j—z

n dv
v+ T—
dx

dv
dx

dv

dz

10

vev

dv 10

dx ve

1
dy =dzde = (y° +1)2 =22+ C =y = /(202 + C)> — 1.

(c1=e9).

/(21+3) e do =

= :>/vevdv:/10daz+C:>

1Oz+C:>vev—e'”:10z+C:>(r+y—l)eI+y:10z+C.

=2 Letv=y/z = % :erl‘%‘ Then,

=
(4 — 2v2)

1 03—
z (2 —v?)

(z+y—1)e" T =10z — 1.

2v

If we use partial fraction expansion for the first integral, we get

we have

3

v v

— v

v3 — v

T 2-w) T2

:'/7(27”2) dv:/d—erC.

T

-
_UZ)

)—

(2-2%) A LB D
v3—v v—1 v+ 1"
where A = —2, B =1/2 and D = 1/2. This implies that
/’(27v2)d / 2+ 1/2+1/2 e+ O —
v = = =Inzx
v3 —w v v—1 v4+1
5 1
—1)2 [0 =1
1n<(v)) = 1HI+C:>U7:C1I:>
v2 v2
2 Pl
Yy - _ _C
y2 = Cl, (lee )
Since y(3) = -5 = 2‘2?’ =C, = C; = %. Consequently, we get
y? — a2 2 16 4 2
= =2 =o.
o2 5 Y T Y tE
This equation can be written as follows.
y_ @-y _ (-
dz (3z +y) (B+1)
Let v =y/z = Z—z = +z%. Then, we get
dv 1-w) dv 1 ((l—v) ) 1 [ (v2+204+1)
v+ r— = — _ = —— +v)]=—— | ——=
dz B+w) dx z \ (3+v) T B+w)
(B+wv)dv _dx Adv B dv - zioC,
(v+1)2 T (v+1) (v+1)2
where B = 2 and A = 1. Consequently, we have
dv 2dv 2
+/ =—Inz+C=—=In(v+1)— — = —Inz+ C.
/(v+1) (v+1)2 ( ) (v+1)
Substituting v = y/z, we get
m(y ey 2 Inz+C = Iny+a)— —2
n - =—Inz n(y +z) — =
z (y+ ) (y+=)
Since y(3) = —2, it follows that
6
In(-2+3)— —=C = C = —6.
( ) (=2+3)
Consequently, we get
2z
In(y+z) — —— +6=0.
(y + )
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(h) Solution 1: This equation can be rearranged as follows.

dy_a:g—a:yz_1—(%)2
dez ~  x2y i
Let v =y/z = g—z :v+m%. Then, we get
dv 1 -2 dv 1 (1= 1[1—202
v+r— = —_ — = — —v)|l=—|—| =
dx v dx T v T v
v dv dz:>/ v dv 1 Lo — 1l |1 22‘ 1 10—
—_ = — ——————— =Inz —=—In(l—2v°| =lnz
(1 — 202) T (1 — 202) 4
1 o ) 1
7|(172v2)|1/4 e a::>‘(172v >|7e4ca:4.

Since y(1) =1, we get v(1) = 1 which implies that C = 0. Consequently, we get
2
Yy 1 2 2\ 1
0= ()= = -2l -2

dy = (13 - zyQ) dz — z?ydy = 0.

Solution 2 : It is a exact equation also. i =

Let M = 2% — zy? and N = —z2y.Then

oM N
— —2zxy = —
Jy 1¢)
Therefore
4 2 2
T %y
Fay) = [ -ade o) =" - T v o) —
oF
il -2’y +g'(y) = —2’y = ¢'(y) = 0
Yy
4 2 2
z z
9w) = C=Fley =" -"+C=0
Since y(1) =1, we get C = —% = zt —22%y% = 1.

(i) Let M = zy? + y and N = 2y — z. Then, we have
Sy — % _2wy+1-(-1) _2

M zy2 +y Y

This implies that the integrating factor is p(y) = y~2. Let My =z +y~ ! and Ny =2y~ — 2y~ 2.Then, we have

oM, 1 AN
dy  y2 Oz
which implies that the equation is exact. Thus, we get
. 2
— x xr
F(z,y) = / (z+v7") do+g(y) = 5 Tty =
)
oF T _ _ _
— = - 4dw=22—w =4 =2y =
oy y
I2 xr
g(y) = 21ny+CéF(m,y):?+;+21ny+C:0.

Since y(0) = 3, we get C = —21n 3. Therefore, it follows that

2
F(z,y) = %+g+2lny:2ln3.

This is a Bernoulli equation with n = 2. Let v = y*~2 = y~!. Then, it follows that

@

=

dv _ody 9, 1 dv v
— =y — = -y y+7y =—-1= — + — = —1.
dz dz T dz T
d
Note that the integrating factor is el & = z. Thus we get
dv d z?2 C T
r— + v = —r=—= — () =—r—=v=-"+C—=v=—— =
dz dz 2 T 2
— _ 2x
Y= sc a2
Since y(1) = 2, we get C = 1. Consequently, we have
_ 2z
Yoo 2

Exercise 17 (Homogeneous Second Order Linear ODEs with constant coefficients). Solve the following ITVPs:

y' =3y +2y=0 y' +4y +3y=0 y' +3y' =0 y' +5y +3y=0
(a) qu(0)=1 (b) Q¥(0) =2 (¢) qu(0)=-2 (d) Qy(0)=1
y'(0) =1 y'(0)=—1 y'(0) =3 y'(0)=0

Solution 17.
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(a) The characteristic equation is 0 = 2 — 3r + 2 = (r — 1)(r — 2). The roots are r; = 1 and 7o = 2. Therefore the general solution to the ODE is
y=cre + cae?t for constants c¢; and cs.

The first initial condition gives 1 = y(0) = ¢; + co. Since y’(z) = c1e? + 2cae??, the second initial condition gives 1 = 3/(0) = ¢; + 2¢2. It follows
that ¢; =1 and c3 = 0.

Therefore the solution to the IVP is y(t) = e’.

5 ¢ 1 5
b) y= et - =
(b) y=ge 3¢

(c) y=—-1-¢*

13 +5v13 (*5+2\/ﬁ)t i 13 - 5v13 (*5*2\/ﬁ)f
—e —e

d) y=
() v 26 26

Exercise 18 (Fundamental Sets of Solutions). In each of the following: Verify that y; and yo are solutions of the given
ODE; calculate the Wronskian of 4; and ys; and determine if they form a fundamental set of solutions.

a) Py’ —2y=0; yi(t) =17 yt)=t"
y'+4y =0; yi(t) = cos2t, ya(t) =sin2¢
(© ¥ —2y+y=0; w(t)=¢", yalt)=te
(d) @—zcotz)y” —ay +y=00<z<n); yi(x) =2z, yo(z)=sinz
Solution 18.

(a) Clearly t?y} — 2y; = t2(t?)" — 2t = t3(2) — 2t> = 0 and t?yY — 2yo = 2(t71)" — 2t =¢#2(2t7% —2t7* = 0.
Next we calculate that
Y1 Y2 ! lio—1
w 0 = = — 142-1.
(y1,92)(t) v b o =2 +
Since W # 0, y1 and ys2 form a fundamental set of solutions of the ODE.
(b) Yes
(c) Yes

(d) Yes
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