July 18, 2019 Math 216 Summer 2019 Second Exam Your Name / Ad - Soyad Signature / İmza Problem 1 2 3 4 5 Total (70 min.) Points: 16 18 20 30 16 100 Student ID # / Öğrenci No (mavi tükenmez!) Score:

Time limit is **70 minutes**. If you need more room on your exam paper, you may use the empty spaces on the paper. You have to show your. Answers without reasonable-even if your results are true- work will either get zero or very little credit.

1. (16 points) Solve the initial value problem

$$y'' - 6y' + 9y = 0$$
, $y(0) = 1$, $y'(0) = 0$

Solution: From the auxiliary equation $m^2 - 6m + 0 = 0$, we have $(m - 3)^2 = 0$ and we get $m_1 = m_2 = 3$ as the roots so that the corresponding general solution

$$y = c_1 e^{3x} + c_2 x e^{3x}$$

Imposing the condition y(0) = 1, we see from $c_1e^0 + c_20e^0 = 1$ that $c_1 = 1$. Differentiating $y' = 3c_1e^{3x} + c_2e^{3x} + 3c_2xe^{3x}$ and then using y'(0) = 0 gives $y' = 3c_1e^0 + c_2e^0 + 3c_20e^0 = 0$ and so $3c_1 + c_2 = 0$. Hence $c_2 = -3$. Hence the solution of the IVP is

$$y = e^{3x} - 3xe^{3x} = \boxed{e^{3x}(1 - 3x)}$$

2. (18 Points) Find the general solution.

$$y'' + 2y' - 3y = e^{-3x} + 3x$$

Solution: The complementary function is $y_c = c_1 e^x + c_2 e^{-3x}$ and we assume $y_p = Axe^{-3x} + Bx + C$. Then $y'_p = Ae^{-3x} - 3Axe^{-3x} + B$ and $y''_p = -3Ae^{-3x} - 3Ae^{-3x} + 9Axe^{-3x} = -6Ae^{-3x} + 9Axe^{-3x}$. Substituting into the differential equation we get $-6Ae^{-3x} + 9Axe^{-3x} + 2(Ae^{-3x} - 3Axe^{-3x} + B) - 3(Axe^{-3x} + Bx + C) = e^{-3x} + 3x$ $-4Ae^{-3x} + (-3B)x + 2B - 3C = e^{-3x} + 3x$ -4A = 1, -3B = 3, and 2B - 3C = 0 A = -1/4, B = -1, C = -2/3Hence $y_p = -\frac{1}{4}xe^{-3x} - x - \frac{2}{3}$. Hence the general solution is $y = y_c + y_p = c_1e^x + c_2e^{-2x} - \frac{1}{4}xe^{-3x} - x - \frac{2}{3}$ 3. (20 Points) Use variation of parameters to find the general solution to

$$y'' + 4y = \sec(2x),$$

(if $y_c = c_1 \cos(2x) + c_2 \sin(2x)$).

Solution: From the auxiliary equation $m^2 + 4 = 0$ we have $y_c = c_1 \cos(2x) + c_2 \sin(2x)$. With the identifications $y_1 = \cos(2x)$ and $y_2 = \sin(2x)$, we next compute the Wronskian:

$$W(\cos(2x),\sin(2x)) = \begin{vmatrix} \cos(2x) & \sin(2x) \\ -2\sin(2x) & 2\cos(2x) \end{vmatrix} = 2\cos^2(2x) + 2\sin^2(2x) = 2 \neq 0$$

Since the given differential equation is already in standard form (that is, the coefficient of y'' is 1), we identify $f(x) = \sec(2x)$. We now obtain

$$W_1 = \begin{vmatrix} 0 & \sin(2x) \\ \sec(2x) & 2\cos(2x) \end{vmatrix} = 0 - \sec(2x)\sin(2x) = -\frac{\sin(2x)}{\cos(2x)} = -\tan(2x)$$

and

$$W_2 = \begin{vmatrix} \cos(2x) & 0\\ -2\sin(2x) & \sec(2x) \end{vmatrix} = 1$$

and so

$$u'_1 = \frac{W_1}{W} = \frac{-\tan(2x)}{2} = -\frac{1}{2}\tan(2x)$$
 $u'_2 = \frac{W_2}{W} = \frac{1}{2}$

Integrating we have

$$u_1 = \int (-\frac{1}{2}\tan(2x)) dx = \frac{1}{4}\ln|\cos(2x)|$$
 and $u_2 = \int \frac{1}{2} dx = \frac{1}{2}x$

Therefore, the particular solution is given by

$$y_p = u_1 \cos(2x) + u_2 \sin(2x) = \frac{1}{4} \ln|\cos(2x)|\cos(2x) + \frac{1}{2}x\sin(2x)$$

Then the general solution is

$$y_g = y_c + y_p = \left| c_1 \cos(2x) + c_2 \sin(2x) + \frac{1}{4} \ln|\cos(2x)|\cos(2x) + \frac{1}{2}x\sin(2x) \right|$$

- 4. Compute the following.
 - (a) (10 Points) $\mathscr{L}\left\{e^{2t}(t-1)^2\right\}$

Solution: We first expand the square and then multiply.

$$\mathscr{L}\left\{e^{2t}(t-1)^{2}\right\} = \mathscr{L}\left\{e^{2t}(t^{2}-2t+1)\right\} = \mathscr{L}\left\{t^{2}e^{2t}-2te^{2t}+e^{2t}\right\}$$
$$= \boxed{\frac{2}{(s-2)^{3}}-\frac{2}{(s-2)^{2}}+\frac{1}{s-2}}$$

(b) (10 Points)
$$\mathscr{L}{f(t)}$$
 where $f(t) = \begin{cases} 1-t, & 0 < t < 1\\ 0, & t > 1 \end{cases}$

Solution: By integrating by parts, we have

$$\mathscr{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) \, \mathrm{d}t = \int_0^1 (1-t) e^{-st} \, \mathrm{d}t = \left(-\frac{1}{s} (1-t) e^{-st} + \frac{1}{s^2} e^{-st} \right) \Big|_0^1$$
$$= \boxed{\frac{1}{s^2} e^{-s} + \frac{1}{s} - \frac{1}{s^2}, \quad s > 0}$$

(c) (10 Points) $\mathscr{L}^{-1}\left\{\frac{5s}{(s-2)^2}\right\}$

Solution:
$$\mathscr{L}^{-1}\left\{\frac{5s}{(s-2)^2}\right\} = \mathscr{L}^{-1}\left\{\frac{5(s-2)+10}{(s-2)^2}\right\} = \mathscr{L}^{-1}\left\{\frac{5}{s-2} + \frac{10}{(s-2)^2}\right\}$$
$$= \boxed{5e^{2t} + 10te^{2t}}$$

5. (16 Points) Solve, using Laplace transforms, the initial value problem.

$$y'' - 5y' - 6y = 2e^t$$
, $y(0) = 0$, $y'(0) = 1$

Although it is possible to solve this with other methods, you will receive credit only if you use Laplace transforms.

Solution: The Laplace transform of the equatin is
$\mathscr{L}\left\{y''-5y'-6y\right\} = \mathscr{L}\left\{2e^{t}\right\} \Rightarrow \mathscr{L}\left\{y''\right\} - 5\mathscr{L}\left\{y'\right\} - 6\mathscr{L}\left\{y\right\} = \mathscr{L}\left\{2e^{t}\right\}$
$s^{2}\mathscr{L}\{y\} - sy(0) - y'(0) - 5[s\mathscr{L}\{y\} - y(0)] - 6\mathscr{L}\{y\} = \frac{2}{s-1}$
$Y(s)(s^2 - 5s - 6) = \frac{2}{s - 1} + 1 \Rightarrow Y(s) = \frac{s + 1}{(s - 1)(s - 6)(s + 1)}$
$Y(s) = \frac{1}{(s-1)(s-6)}$
$Y(s) = -\frac{1}{5}\frac{1}{s-1} + \frac{1}{5}\frac{1}{s-6}$
$y(t) = -\frac{1}{5}e^{t} + \frac{1}{5}e^{6t}$

f(t)	$F(s) = \mathscr{L}[f](s)$	
1	$\frac{1}{s}$	s > 0
e ^{at}	$\frac{1}{s-a}$	s > a
t^n $(n \in \mathbb{N})$	$\frac{n!}{s^{n+1}}$	s > 0
sin at	$\frac{a}{s^2+a^2}$	<i>s</i> > 0
cos at	$\frac{s}{s^2+a^2}$	s > 0
sinh <i>at</i>	$\frac{a}{s^2-a^2}$	s > a
cosh at	$\frac{s}{s^2-a^2}$	s > a
$e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}$	s > a
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
$t^n e^{at}$ $(n \in \mathbb{N})$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$u_c(t)$	$\frac{e^{-cs}}{s}$	s > 0
$u_c(t)f(t-c)$	$e^{-cs}F(s)$	
$e^{ct}f(t)$	F(s-c)	
f(ct) $(c > 0)$	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	
ι	l.	J

